Skip to main content
Log in

Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In the present work, a kinetic study and optimization of the process of spruce wood peroxide oxidation in “acetic acid–water” medium in the presence of suspended TiO2 catalyst at temperatures 70–100 °C were accomplished for the first time. The effect of wood species and organic solvent nature on the features of the processes of catalytic peroxide fractionation of wood biomass on microcrystalline cellulose and soluble organic products from lignin and hemicelluloses is described. Solid products of wood peroxide oxidation were characterized by FTIR, XRD, SEM, solid state 13C CP-MAS NMR and soluble products were identified by GC–MS. The experimental optimization of the process of birch wood oxidation by oxygen in “water–alkaline” medium in the presence of suspended Cu(OH)2 catalyst was carried out at temperature range 160–180 °C. The scheme of biorefinery of birch wood, based on catalytic oxidative fractionation of wood biomass with the production of pentosans, vanillin, syringaldehyde and levulinic acid was developed. The resulting products are in demand in many areas, including food, pharmaceutical, chemical, cosmetic industries, synthesis of new functional and biodegradable polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jing Y, Guo Y, Xia Q, Liu X, Wang Y (2019) Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass. Chem 5:1–27

    Article  Google Scholar 

  2. Yung MM (2016) Catalytic conversion of biomass to fuels and chemicals. Top Catal 59:1

    Article  CAS  Google Scholar 

  3. Rowell RM (2012) Handbook of wood chemistry and wood composites, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Sixta H (2006) Handbook of pulp. Wiley, Weinheim

    Book  Google Scholar 

  5. Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870

    Article  CAS  Google Scholar 

  6. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99

    Article  CAS  Google Scholar 

  7. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599

    Article  CAS  Google Scholar 

  8. Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Ree RV, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefin 3(5):534–546

    Article  CAS  Google Scholar 

  9. de Long E, Hidson, A, Walsh P (2013) Task 42. Biorefinery In: Report IEA Bioenergy

  10. Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Roman-Leshkov Yu (2016) Reductive catalytic fractionation of corn stover lignin. ACS Sustain Chem Eng 4:6940–6950

    Article  CAS  Google Scholar 

  11. Van den Bosch S, Schutyser W, Vanholme R, Drissen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8:1748–1763

    Article  Google Scholar 

  12. Tarabanko VE, Kaygorodov KL, Skiba EA, Tarabanko NV, Chelbina YV, Baybakova OV, Kuznetsov BN, Djakovitch L, Pinel C (2017) Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis. J Wood Chem Technol 37:43–5113

    Article  CAS  Google Scholar 

  13. Suchy M, Argyropoulos D (2001) Catalysis and activation of oxygen and peroxide delignification of chemical pulps: a review. ACS Symp Ser 785:2–43

    Article  CAS  Google Scholar 

  14. SongYo Wi SG, Kim HM, Bae HJ (2016) Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresour Technol 214:30–36

    Article  Google Scholar 

  15. Dussan K, Girisuta B, Haverty D, Leahy JJ, Hayes MH (2014) The effect of hydrogen peroxide concentration and solid loading on the fractionation of biomass in formic acid. Carbohydr Polym 111:374–384

    Article  CAS  Google Scholar 

  16. Kuznetsov BN, Chesnokov NV, Yatsenkova OV, Sharypov VI, Garyntseva NV, Ivanchenko NM, Yakovlev VA (2017) Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts. Wood Sci Technol 51(5):1189–1208

    Article  CAS  Google Scholar 

  17. Kuznetsov BN, Sudakova IG, Garyntseva NV, Levdansky VA, Ivanchenko NM, Pestunov AV, Djakovitch L, Pinel C (2018) Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Sci Technol 52(5):1377–1394

    Article  CAS  Google Scholar 

  18. Sjöström, Eero, Alén, Raimo (Eds.) (1999). Analytical methods in wood chemistry, pulping and papermaking. Springer Series in Wood Science. Springer, Berlinn

    Google Scholar 

  19. Hu F, Jang S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  Google Scholar 

  20. Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  21. Wikberg H, Maunu SL (2004) Characterization of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58:461–466

    Article  CAS  Google Scholar 

  22. Zuckerstätter G, Schild G, Wollboldt P, Röder T, Weber HK, Sixta H (2009) The elucidation of cellulose supra molecular structure by 13C CP-MAS NMR. Lenzing Ber 87:38–46

    Google Scholar 

  23. Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804

    Article  CAS  Google Scholar 

  24. Mishra S, Kharkar PS, Pethe AM (2019) Biomass and waste materials as potential sources of nanocrystalline cellulose: comparative review of preparation methods (2016–till date). Carbohydr Polym 207:418–427

    Article  CAS  Google Scholar 

  25. Kuznetsov BN, Chesnokov NV, Sudakova IG, Garyntseva NV, Kuznetsova SA, Malyar YuN, Yakovlev VA, Djakovitch L (2018) Green catalytic processing of native and organosolv lignins. Catal Today 309:18–30

    Article  CAS  Google Scholar 

  26. Germer EI (2003) Chemistry of delignification under organosolv cooking. Lesnoy Zhurnal For J 4:99–108

    Google Scholar 

  27. Ede RM, Brunow G (1989) Reactions of β-aryl ether lignin model compounds under formic acid and peroxyformic acid pulping conditions. In: The International Symposium on Wood and Pulping Chemistry, Raleigh, NC, USA

  28. Garyntseva NV, Sudakova IG, Kuznetsov BN (2011) Properties of enterosorbents obtained from acetic acid lignins of abies, aspen and birch wood. J Sib Federal Univ Chem 4(2):121–126

    CAS  Google Scholar 

  29. Ivanov IP, Mikova NM, Lutoshkin MA, Chesnokov NV, Kuznetsov BN (2017) The study of structure and properties of nanoporous carbon materials obtained by alkaline thermal activation of lignin of fir wood. J Sib Federal Univ Chem 10(3):390–400

    Article  Google Scholar 

  30. Grishechko LI, Amaral-LabatG SzczurekA, Fierro V, Kuznetsov BN, Pizzi A, Celzard A (2013) New tannin-lignin aerogels. Ind Crops Prod 41:347–355

    Article  CAS  Google Scholar 

  31. Kuznetsov BN, Vasilyeva NYu, Kazachenko AS, Skvortsova GP, Levdansky VA, Lutoshkin MA (2018) Development of the method of abies wood ethanol lignin sulfonation using sulfamic acid. J Sib Federal Univ Chem 11(1):122–130

    Article  Google Scholar 

  32. Tarabanko VE, Tarabanko NV (2017) Catalytic oxidation of lignins into the aromatic aldehydes: general process trends and development prospects. Int J Mol Sci 18:2421

    Article  Google Scholar 

  33. Tarabanko VE, Smirnova MA, Chernyak MYu, Kondrasenko AA, Tarabanko NV (2015) The nature and mechanism of selectivity decrease of the acid-catalyzed fructose conversion with increasing the carbohydrate concentration. J Siberian Federal Univ Chem 8(1):6–18

    Article  Google Scholar 

  34. Brazdausks P, Puke M, Vedernikovs N, Kruma I (2013) Influence of biomass pretreatment process time on furfural extraction from birch wood. Environ Clim Technol 11:478–485

    Google Scholar 

  35. Mashkovsky MD (2014) Medicinal Products. Moskow, Russia, Novaya Volna

    Google Scholar 

  36. Heitner C, Dimmel DR, Schmidt JA (2010) Lignin and lignans: advances in chemistry. CRC Press, London

    Google Scholar 

  37. Zhou J, Zhang H, Deng J, Wu Y (2016) High glass-transition temperature acrylate polymers derived from biomasses, syringaldehyde, and vanillin. Macromol Chem Phys 217:2402–2408

    Article  CAS  Google Scholar 

  38. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The reported study was supported by Russian Science Foundation, Grant No. 16-13-10326.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris N. Kuznetsov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V. et al. Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood. Top Catal 63, 229–242 (2020). https://doi.org/10.1007/s11244-020-01244-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01244-9

Keywords

Navigation