Skip to main content
Log in

Low Temperature NOx Adsorption Study on Pd-Promoted Zeolites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study Pd-promoted zeolites (BEA, FER, MFI and MOR) are synthesized and investigated for potential use in the low-temperature NOx adsorption. The catalysts are characterized by BET, XRD, UV–Vis and XRF, while the adsorption/desorption characteristics of the samples are investigated by NOx adsorption/TPD, with and without water in the feed. The nature of the adsorbed NOx species has been analyzed by operando FT-IR spectroscopy. Under dry conditions at 50 °C all the investigated zeolite frameworks are able to store significant amounts of NOx, up to 1 mmol/gcat for the MOR sample; the presence of Pd has not a significant impact on the amounts of the stored NOx. In fact, under dry conditions at 50 °C the zeolite frameworks oxidize NO to NO2, and store NOx from NO2 over the zeolitic support. FTIR data indicates that NOx are stored in the form of nitrosonium ion NO+ and nitrate ions; nitrosyl species formed on Al3+ and Pdn+ sites have also been observed, although to a lower extent. Evidences have also been provided for the existence of gaseous/weakly interacting species (mostly NO2) contained in the pores of the zeolites. Water inhibits NO oxidation over all investigated samples, resulting in a strong decrease in the NOx storage capacity. Still, appreciable amounts of NOx could be stored at 50 °C (up to 60 µmol/gcat for Pd/MFI) in the presence of water over the Pd-doped carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ji Y, Bai S, Crocker M (2015) Al2O3-based passive NOx adsorbers for low temperature applications. Appl Catal B 170–171:283–292. https://doi.org/10.1016/j.apcatb.2015.01.025

    Article  CAS  Google Scholar 

  2. Theis JR, Lambert CK (2015) An assessment of low temperature NOx adsorbers for cold-start NOx control on diesel engines. Catal Today 258:367–377. https://doi.org/10.1016/J.CATTOD.2015.01.031

    Article  CAS  Google Scholar 

  3. Tamm S, Andonova S, Olsson L (2014) Silver as storage compound for NOx at low temperatures. Catal Lett 144:674–684. https://doi.org/10.1007/s10562-014-1211-y

    Article  CAS  Google Scholar 

  4. Jones S, Ji Y, Crocker M (2016) Ceria-based catalysts for low temperature NOx storage and release. Catal Lett 146:909–917. https://doi.org/10.1007/s10562-016-1704-y

    Article  CAS  Google Scholar 

  5. Murata Y, Morita T, Wada K, Ohno H (2015) NOx trap three-way catalyst (N-TWC) concept: TWC with NOx adsorption properties at low temperatures for cold-start emission control. SAE Int J Fuels Lubr 8:1–6. https://doi.org/10.4271/2015-01-1002

    Article  CAS  Google Scholar 

  6. Chen H-Y, Collier JE, Liu D, Mantarosie L, Durán-Martín D, Novák V, Rajaram RR, Thompsett D (2016) Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control. Catal Lett 146:1706–1711. https://doi.org/10.1007/s10562-016-1794-6

    Article  CAS  Google Scholar 

  7. Zheng Y, Kovarik L, Engelhard MH, Wang Y, Wang Y, Gao F, Szanyi J (2017) Low-temperature Pd/zeolite passive NOx adsorbers: structure, performance, and adsorption chemistry. J Phys Chem C 121:15793–15803. https://doi.org/10.1021/acs.jpcc.7b04312

    Article  CAS  Google Scholar 

  8. Ryou Y, Lee J, Lee H, Kim CH, Kim DH (2017) Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catal Today. https://doi.org/10.1016/j.cattod.2017.11.030

    Article  Google Scholar 

  9. Vu A, Luo J, Li J, Epling WS (2017) Effects of CO on Pd/BEA passive NOx adsorbers. Catal Lett 147:745–750. https://doi.org/10.1007/s10562-017-1976-x

    Article  CAS  Google Scholar 

  10. Lee J, Ryou YS, Cho SJ, Lee H, Kim CH, Kim DH (2018) Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: evidence of isolated-Pd species obtained after a high-temperature thermal treatment. Appl Catal B 226:71–82. https://doi.org/10.1016/j.apcatb.2017.12.031

    Article  CAS  Google Scholar 

  11. Loughran CJ, Resasco DE (1995) Bifunctionality of palladium-based catalysts used in the reduction of nitric oxide by methane in the presence of oxygen. Appl Catal B 7:113–126. https://doi.org/10.1016/0926-3373(95)00023-2

    Article  CAS  Google Scholar 

  12. Adelman BJ, Sachtler WMH (1997) The effect of zeolitic protons on NOx reduction over Pd/ZSM-5 catalysts. Appl Catal B 14:1–11. https://doi.org/10.1016/S0926-3373(97)00007-6

    Article  CAS  Google Scholar 

  13. Descorme C, Gélin P, Lécuyer C, Primet M (1997) Palladium-exchanged MFI-type zeolites in the catalytic reduction of nitrogen monoxide by methane influence of the Si/Al ratio on the activity and the hydrothermal stability. Appl Catal B 13:185–195. https://doi.org/10.1016/S0926-3373(96)00104-X

    Article  CAS  Google Scholar 

  14. Ali A, Alvarez W, Loughran CJ, Resasco DE (1997) State of Pd on H-ZSM-5 and other acidic supports during the selective reduction of NO by CH4 studied by EXAFS/XANES. Appl Catal B 14:13–22. https://doi.org/10.1016/S0926-3373(97)00008-8

    Article  CAS  Google Scholar 

  15. Descorme C, Gélin P, Lécuyer C, Primet M (1998) Catalytic reduction of nitric oxide by methane in the presence of oxygen on palladium-exchanged mordenite zeolites. J Catal 362:352–362. https://doi.org/10.1006/jcat.1998.2112

    Article  Google Scholar 

  16. Ohtsuka H, Tabata T (2000) Influence of Si/Al ratio on the activity and durability of Pd-ZSM-5 catalysts for nitrogen oxide reduction by methane. Appl Catal B 26:275–284. https://doi.org/10.1016/S0926-3373(00)00127-2

    Article  CAS  Google Scholar 

  17. Descorme C, Gélin P, Primet M, Lécuyer C (1996) Infrared study of nitrogen monoxide adsorption on palladium ion-exchanged ZSM-5 catalysts. Catal Lett 41:133–138. https://doi.org/10.1007/BF00811479

    Article  CAS  Google Scholar 

  18. Pommier B, Gélin P (1999) On the nature of Pd species formed upon exchange of H-ZSM-5 with Pd(NH3)4 2+ and calcination in O2. Phys Chem Chem Phys 1:1665–1672. https://doi.org/10.1039/a808792j

    Article  CAS  Google Scholar 

  19. Okumura K, Amano J, Yasunobu N, Niwa M (2000) X-ray absorption fine structure study of the formation of the highly dispersed PdO over ZSM-5 and the structural change of Pd induced by adsorption of NO. J Phys Chem B 104:1050–1057. https://doi.org/10.1021/jp993182w

    Article  CAS  Google Scholar 

  20. Pommier B, Gélin P (2001) Infrared and volumetric study of NO adsorption on Pd-H-ZSM-5. Phys Chem Chem Phys 3:1138–1143. https://doi.org/10.1039/b009782i

    Article  CAS  Google Scholar 

  21. Baerlocher C, McCusker LB (2013) Database of zeolite structures. http://www.iza-structure.org/databases/. Accessed May 2018

  22. De Oliveira AM, Costilla I, Gigola C, Baibich IM, Da Silva VT, Castellã Pergher SB (2010) Characterization of Pd-mordenite catalysts for NO decomposition. Catal Lett 136:185–191. https://doi.org/10.1007/s10562-010-0323-2

    Article  CAS  Google Scholar 

  23. Artioli N, Lobo RF, Iglesia E (2013) Catalysis by confinement: enthalpic stabilization of NO oxidation transition states by micropororous and mesoporous siliceous materials. J Phys Chem C 117:20666–20674. https://doi.org/10.1021/jp406333d

    Article  CAS  Google Scholar 

  24. Salasc S, Skoglundh M, Fridell E (2002) A comparison between Pt and Pd in NOx storage catalysts. Appl Catal B 36:145–160. https://doi.org/10.1016/S0926-3373(01)00300-9

    Article  CAS  Google Scholar 

  25. Sedlmair C, Gil B, Seshan K, Jentys A, Lercher JA (2003) An in situ IR study of the NOx adsorption/reduction mechanism on modified Y zeolites. Phys Chem Chem Phys 5:1897–1905. https://doi.org/10.1039/b209325a

    Article  CAS  Google Scholar 

  26. Li G, Wang X, Jia C, Liu Z (2008) An in situ Fourier transform infrared study on the mechanism of NO reduction by acetylene over mordenite-based catalysts. J Catal 257:291–296. https://doi.org/10.1016/j.jcat.2008.05.007

    Article  CAS  Google Scholar 

  27. Hadjiivanov K (2000) Identification of neutral and charged NxOy surface species by IR spectroscopy. Catal Rev 42:71–144. https://doi.org/10.1081/CR-100100260

    Article  CAS  Google Scholar 

  28. Rivallan M, Ricchiardi G, Bordiga S, Zecchina A (2009) Adsorption and reactivity of nitrogen oxides (NO2, NO, N2O) on Fe-zeolites. J Catal 264:104–116. https://doi.org/10.1016/j.jcat.2009.03.012

    Article  CAS  Google Scholar 

  29. Marie O, Malicki N, Pommier C, Massiani P, Vos A, Schoonheydt R, Geerlings P, Henriques C, Thibault-Starzyk F (2005) NO2 disproportionation for the IR characterisation of basic zeolites. Chem Commun. https://doi.org/10.1039/b414664f

    Article  Google Scholar 

  30. Loiland JA, Lobo RF (2014) Low temperature catalytic NO oxidation over microporous materials. J Catal 311:412–423. https://doi.org/10.1016/j.jcat.2013.12.013

    Article  CAS  Google Scholar 

  31. Ryou YS, Lee J, Cho SJ, Lee H, Kim CH, Kim DH (2017) Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application. Appl Catal B 212:140–149. https://doi.org/10.1016/j.apcatb.2017.04.077

    Article  CAS  Google Scholar 

  32. Morandi S, Prinetto F, Castoldi L, Lietti L, Forzatti P, Ghiotti G (2013) Effect of water and ammonia on surface species formed during NOx storage–reduction cycles over Pt–K/Al2O3 and Pt–Ba/Al2O3 catalysts. Phys Chem Chem Phys 15:13409–13417. https://doi.org/10.1039/c3cp51195b

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lietti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porta, A., Pellegrinelli, T., Castoldi, L. et al. Low Temperature NOx Adsorption Study on Pd-Promoted Zeolites. Top Catal 61, 2021–2034 (2018). https://doi.org/10.1007/s11244-018-1045-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1045-8

Keywords

Navigation