Skip to main content
Log in

Effect of Surface Tungstate W5+ Species on the Metathesis Activity of W-Doped Spherical Silica Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The high surface area W-doped spherical silica (SSP) catalysts were prepared with different sequences of W and Si addition (W–Si(Alt), Si1–W2, and W1–Si2) by the sol–gel method with CTAB as a structure directing agent and compared with the impregnated one (W/SSP). All the catalysts exhibited high specific surface area (∼ 1100 m2 g−1) with a closely perfect spherical shape. The presence of surface/sub-surface tungstate W5+ species, crystalline bulk WO3, and tetrahedral tungsten oxide species on the prepared catalysts was investigated by means of X-ray photoelectron spectroscopy depth profile analysis, X-ray diffraction, and Raman spectroscopy. Without in situ reduction by the reactants/products, tungstate W5+ species was found on the top surface of the as-prepared W–Si(Alt) whereas for the Si1–W2, W/SSP, and W1–Si2, the W5+ appeared only on the sub-surface of the catalysts after 5 and 15 s Ar+ etching. The abundance of surface W5+ species is suggested to facilitate the establishment of the active tungsten carbenes and was correlated well to the catalytic activity in propene metathesis. The surface W5+-activity relationship of the WO3-based metathesis catalysts is useful especially when the catalyst activity did not depend solely on the amount of active tetrahedral coordinated tungsten oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. https://www.icis.com/resources/news/2007/11/05/9075777/ethylene-uses-and-market-data/

  2. Bhuiyan TI, Arudra P, Akhtar MN, Aitani AM, Abudawoud RH, Al-Yami MA, Al-Khattaf SS (2013) Metathesis of 2-butene to propylene over W-mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15. Appl Catal A 467(Supplement C):224–234. https://doi.org/10.1016/j.apcata.2013.07.034

    Article  CAS  Google Scholar 

  3. Spamer A, Dube TI, Moodley DJ, van Schalkwyk C, Botha JM (2003) Application of a WO3/SiO2 catalyst in an industrial environment: part II. Appl Catal A 255(2):133–142. https://doi.org/10.1016/S0926-860X(03)00535-0

    Article  CAS  Google Scholar 

  4. Heckelsberg LF, Banks RL, Bailey GC (1968) Tungsten oxide on silica catalyst for Phillips’ Triolefin process. I&EC Prod Res Dev 7(1):29–31. https://doi.org/10.1021/i360025a007

    Article  CAS  Google Scholar 

  5. Lokhat D, Starzak M, Stelmachowski M (2008) Gas-phase metathesis of 1-hexene over a WO3/SiO2 catalyst: Search for optimal reaction conditions. Appl Catal A 351(2):137–147. https://doi.org/10.1016/j.apcata.2008.09.006

    Article  CAS  Google Scholar 

  6. Liu N, Ding S, Cui Y, Xue N, Peng L, Guo X, Ding W (2013) Optimizing activity of tungsten oxides for 1-butene metathesis by depositing silica on γ-alumina support. Chem Eng Res Des 91(3):573–580. https://doi.org/10.1016/j.cherd.2012.08.008

    Article  CAS  Google Scholar 

  7. Thomas R, Moulijn JA, De Beer VHJ, Medema J (1980) Structure/metathesis activity relations of silica supported molybdenum and tungsten oxide. J Mol Catal 8(1):161–174. https://doi.org/10.1016/0304-5102(80)87015-5

    Article  CAS  Google Scholar 

  8. Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A 213(1):39–45. https://doi.org/10.1016/j.molcata.2003.10.049

    Article  CAS  Google Scholar 

  9. Huang S, Chen F, Liu S, Zhu Q, Zhu X, Xin W, Feng Z, Li C, Wang Q, Xu L (2007) The influence of preparation procedures and tungsten loading on the metathesis activity of ethene and 2-butene over supported WO3 catalysts. J Mol Catal A 267(1):224–233. https://doi.org/10.1016/j.molcata.2006.11.048

    Article  CAS  Google Scholar 

  10. Wu J-F, Ramanathan A, Snavely WK, Zhu H, Rokicki A, Subramaniam B (2016) Enhanced metathesis of ethylene and 2-butene on tungsten incorporated ordered mesoporous silicates. Appl Catal A 528(Supplement C):142–149. https://doi.org/10.1016/j.apcata.2016.10.004

    Article  CAS  Google Scholar 

  11. Maksasithorn S, Praserthdam P, Suriye K, Devillers M, Debecker DP (2014) WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Appl Catal A 488(Supplement C):200–207. https://doi.org/10.1016/j.apcata.2014.09.030

    Article  CAS  Google Scholar 

  12. Maksasithorn S, Praserthdam P, Suriye K, Debecker DP (2015) Preparation of super-microporous WO3–SiO2 olefin metathesis catalysts by the aerosol-assisted sol–gel process. Microporous Mesoporous Mater 213(Supplement C):125–133. https://doi.org/10.1016/j.micromeso.2015.04.020

    Article  CAS  Google Scholar 

  13. Han Y, Xiao F-S, Wu S, Sun Y, Meng X, Li D, Lin S, Deng F, Ai X (2001) A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media. J Phys Chem B 105(33):7963–7966. https://doi.org/10.1021/jp011204k

    Article  CAS  Google Scholar 

  14. Chen L-F, Hu J-C, Wang Y-D, Zhu K, Richards R, Yang W-M, Liu Z-C, Xu W (2006) Highly efficient tungsten-substituted mesoporous SBA-15 catalysts for 1-butene metathesis. Mater Lett 60(25):3059–3062. https://doi.org/10.1016/j.matlet.2006.02.084

    Article  CAS  Google Scholar 

  15. Maheswari R, Pachamuthu MP, Ramanathan A, Subramaniam B (2014) Synthesis, characterization, and epoxidation activity of tungsten-incorporated SBA-16 (W-SBA-16). Ind Eng Chem Res 53(49):18833–18839. https://doi.org/10.1021/ie501784c

    Article  CAS  Google Scholar 

  16. Hu J-C, Wang Y-D, Chen L-F, Richards R, Yang W-M, Liu Z-C, Xu W (2006) Synthesis and characterization of tungsten-substituted SBA-15: an enhanced catalyst for 1-butene metathesis. Microporous Mesoporous Mater 93(1):158–163. https://doi.org/10.1016/j.micromeso.2006.02.019

    Article  CAS  Google Scholar 

  17. Yang X-L, Dai W-L, Gao R, Chen H, Li H, Cao Y, Fan K (2005) Synthesis, characterization and catalytic application of mesoporous W-MCM-48 for the selective oxidation of cyclopentene to glutaraldehyde. J Mol Catal A 241(1):205–214. https://doi.org/10.1016/j.molcata.2005.07.025

    Article  CAS  Google Scholar 

  18. Hu B, Liu H, Tao K, Xiong C, Zhou S (2013) Highly active doped mesoporous KIT-6 catalysts for metathesis of 1-butene and ethene to propene: The influence of neighboring environment of W species. J Phys Chem C 117(49):26385–26395. https://doi.org/10.1021/jp4098028

    Article  CAS  Google Scholar 

  19. Yang X-L, Dai W-L, Gao R, Fan K (2007) Characterization and catalytic behavior of highly active tungsten-doped SBA-15 catalyst in the synthesis of glutaraldehyde using an anhydrous approach. J Catal 249(2):278–288. https://doi.org/10.1016/j.jcat.2007.05.002

    Article  CAS  Google Scholar 

  20. Liu H, Tao K, Yu H, Zhou C, Ma Z, Mao D, Zhou S (2015) Effect of pretreatment gases on the performance of WO3/SiO2 catalysts in the metathesis of 1-butene and ethene to propene. C R Chim 18(6):644–653. https://doi.org/10.1016/j.crci.2014.11.008

    Article  CAS  Google Scholar 

  21. Lv X, Zhang L, Xing F, Lin H (2016) Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater 225(Supplement C):238–244. https://doi.org/10.1016/j.micromeso.2015.12.024

    Article  CAS  Google Scholar 

  22. Liu S, Cool P, Collart O, Van Der Voort P, Vansant EF, Lebedev OI, Van Tendeloo G, Jiang M (2003) The Influence of the alcohol concentration on the structural ordering of mesoporous silica: cosurfactant versus cosolvent. J Phys Chem B 107(38):10405–10411. https://doi.org/10.1021/jp034410w

    Article  CAS  Google Scholar 

  23. Biloen P, Pott GT (1973) X-ray photoelectron spectroscopy study of supported tungsten oxide. J Catal 30(2):169–174. https://doi.org/10.1016/0021-9517(73)90063-8

    Article  CAS  Google Scholar 

  24. Shpak AP, Korduban AM, Medvedskij MM, Kandyba VO (2007) XPS studies of active elements surface of gas sensors based on WO3–x nanoparticles. J Electron Spectrosc Relat Phenom 156–158(Supplement C):172–175. https://doi.org/10.1016/j.elspec.2006.12.059

    Article  CAS  Google Scholar 

  25. Seifollahi Bazarjani M, Hojamberdiev M, Morita K, Zhu G, Cherkashinin G, Fasel C, Herrmann T, Breitzke H, Gurlo A, Riedel R (2013) Visible light photocatalysis with c-WO3–x/WO3 × H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J Am Chem Soc 135(11):4467–4475. https://doi.org/10.1021/ja3126678

    Article  CAS  PubMed  Google Scholar 

  26. Doniach S, Sunjic M (1970) Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J Phys C 3(2):285

    Article  CAS  Google Scholar 

  27. Chauvin J, Thomas K, Clet G, Houalla M (2015) Comparative influence of surface tungstate species and bulk amorphous WO3 particles on the acidity and catalytic activity of tungsten oxide supported on silica. J Phys Chem C 119(22):12345–12355. https://doi.org/10.1021/acs.jpcc.5b01479

    Article  CAS  Google Scholar 

  28. Yuan P, He HP, Wu DQ, Wang DQ, Chen LJ (2004) Characterization of diatomaceous silica by Raman spectroscopy. Spectrochim Acta A 60(12):2941–2945. https://doi.org/10.1016/j.saa.2004.02.005

    Article  CAS  Google Scholar 

  29. Humbert B, Burneau A, Gallas JP, Lavalley JC (1992) Origin of the Raman bands, D1 and D2, in high surface area and vitreous silicas. J Non-Cryst Solids 143(Supplement C):75–83. https://doi.org/10.1016/S0022-3093(05)80555-1

    Article  CAS  Google Scholar 

  30. Kim DS, Ostromecki M, Wachs IE, Kohler SD, Ekerdt JG (1995) Preparation and characterization of WO3/SiO2 catalysts. Catal Lett 33(3):209–215. https://doi.org/10.1007/BF00814225

    Article  CAS  Google Scholar 

  31. de Lucas A, Valverde JL, Cañizares P, Rodriguez L (1999) Partial oxidation of methane to formaldehyde over W/SiO2 catalysts. Appl Catal A 184(1):143–152. https://doi.org/10.1016/S0926-860X(99)00102-7

    Article  Google Scholar 

  32. Burcham LJ, Deo G, Gao X, Wachs IE (2000) In situ IR, Raman, and UV–Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation. Top Catal 11(1):85–100. https://doi.org/10.1023/A:1027275225668

    Article  Google Scholar 

  33. Figueras F, Palomeque J, Loridant S, Fèche C, Essayem N, Gelbard G (2004) Influence of the coordination on the catalytic properties of supported W catalysts. J Catal 226(1):25–31. https://doi.org/10.1016/j.jcat.2004.05.006

    Article  CAS  Google Scholar 

  34. Huang S, Liu S, Xin W, Bai J, Xie S, Wang Q, Xu L (2005) Metathesis of ethene and 2-butene to propene on W/Al2O3–HY catalysts with different HY contents. J Mol Catal A 226(1):61–68. https://doi.org/10.1016/j.molcata.2004.09.026

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the SCG Chemicals Co, Ltd., the Thailand Research Fund (BRG6180001), and Chulalongkorn University are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joongjai Panpranot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watmanee, S., Suriye, K., Praserthdam, P. et al. Effect of Surface Tungstate W5+ Species on the Metathesis Activity of W-Doped Spherical Silica Catalysts. Top Catal 61, 1615–1623 (2018). https://doi.org/10.1007/s11244-018-1020-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1020-4

Keywords

Navigation