Skip to main content

Advertisement

Log in

Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Hot electrons are generated when an exothermic chemical reaction takes place on the surface of a metal catalyst. Detection of these electrons using a catalytic nanodiode based on a metal-semiconductor Schottky junction can shed light on the mechanisms for energy transfer between the reacting molecules and the catalyst. Here, we present a study on the isotope effect of hot electron generation during the catalytic water formation reaction on platinum nanoparticles. To elucidate the isotope effect of hot electrons and to distinguish the reaction steps responsible for the creation of hot electrons, we carried out H2 and D2 oxidation reactions. We also considered the dependence of hot electron flux across the nanodiode on the temperature and geometry of the catalyst. Based on these results, we conclude that the observed effect of hot electron creation is mainly associated with energy released during the surface reaction of adsorbed hydrogen atoms and hydroxyl radicals, i.e. \({\text{H}}+{\text{OH}} \to {{\text{H}}_2}{\text{O,}}\) at high gas pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Park JY (2014) Current trends of surface science and catalysis. Springer, New York

    Book  Google Scholar 

  2. Park JY, Baker LR, Somorjai GA (2015) Chem Rev 115:2781–2817

    Article  CAS  PubMed  Google Scholar 

  3. Nedrygailov II, Park JY (2016) Chem Phys Lett 645:5–14

    Article  CAS  Google Scholar 

  4. Kim SM, Lee H, Park JY (2015) Catal Lett 145:299–308

    Article  CAS  Google Scholar 

  5. Nienhaus H (2002) Surf Sci Rep 45:1–78

    Article  CAS  Google Scholar 

  6. Hasselbrink E (2006) Curr Opin Solid State Mater Sci 10:192–204

    Article  CAS  Google Scholar 

  7. Wodtke AM, Matsiev D, Auerbach DJ (2008) Prog Surf Sci 83:167–214

    Article  CAS  Google Scholar 

  8. Wodtke AM (2016) Chem Soc Rev 45:3641–3657

    Article  CAS  PubMed  Google Scholar 

  9. Hasselbrink E (2009) Surf Sci 603:1564–1570

    Article  CAS  Google Scholar 

  10. Park JY, Kim SM, Lee H, Nedrygailov II (2015) Acc Chem Res 48:2475–2483

    Article  CAS  PubMed  Google Scholar 

  11. Somorjai GA, Park JY (2008) Angew Chem Int Ed 47:9212–9228

    Article  CAS  Google Scholar 

  12. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605

    Article  CAS  PubMed  Google Scholar 

  13. Born M, Oppenheimer R (1927) Ann Phys 389:457–484

    Article  Google Scholar 

  14. Huang Y, Wodtke AM, Hou H, Rettner CT, Auerbach DJ (2000) Phys Rev Lett 84:2985–2988

    Article  CAS  PubMed  Google Scholar 

  15. Pavanello M, Auerbach DJ, Wodtke AM, Blanco-Rey M, Alducin M, Kroes G-J (2013) J Phys Chem Lett 4:3735–3740

    Article  CAS  Google Scholar 

  16. Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Appl Phys Lett 74:4046–4048

    Article  CAS  Google Scholar 

  17. Karpov EG, Nedrygailov I (2010) Phys Rev B 81:205443

    Article  CAS  Google Scholar 

  18. Karpov EG, Hashemian MA, Dasari SK (2013) J Phys Chem C 117:15632–15638

    Article  CAS  Google Scholar 

  19. Dasari SK, Hashemian MA, Mohan J, Karpov EG (2012) Chem Phys Lett 553:47–50

    Article  CAS  Google Scholar 

  20. Schierbaum K, Achhab M (2011) Phys Status Solidi A 208:2796–2802

    Article  CAS  Google Scholar 

  21. Lee H, Nedrygailov II, Lee C, Somorjai GA, Park JY (2015) Angew Chem Int Ed 54:2340–2344

    Article  CAS  Google Scholar 

  22. Park JY, Lee H, Renzas JR, Zhang Y, Somorjai GA (2008) Nano Lett 8:2388–2392

    Article  CAS  PubMed  Google Scholar 

  23. Hervier A, Renzas JR, Park JY, Somorjai GA (2009) Nano Lett 9:3930–3933

    Article  CAS  PubMed  Google Scholar 

  24. Lee H, Nedrygailov II, Lee YK, Lee C, Choi H, Choi JS, Choi C-G, Park JY (2016) Nano Lett 16:1650–1656

    Article  CAS  PubMed  Google Scholar 

  25. Greber T (1997) Surf Sci Rep 28:1–64

    Article  CAS  Google Scholar 

  26. Somorjai GA (2004) Catal Lett 101:1–3

    Article  CAS  Google Scholar 

  27. Nienhaus H, Gergen B, Weinberg WH, McFarland EW (2002) Surf Sci 514:172–181

    Article  CAS  Google Scholar 

  28. Hashemian MA, Palacios E, Nedrygailov II, Diesing D, Karpov EG (2013) ACS Appl Mater Interfaces 5:12375–12379

    Article  CAS  PubMed  Google Scholar 

  29. Cakabay Ö, El Achhab M, Schierbaum K (2014) Appl Phys A 118:1127–1132

    Article  CAS  Google Scholar 

  30. Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (2000) Surf Sci 445:335–342

    Article  CAS  Google Scholar 

  31. Williams WR, Marks CM, Schmidt LD (1992) J Phys Chem 96:5922–5931

    Article  CAS  Google Scholar 

  32. Hellsing B, Kasemo B, Zhdanov VP (1991) J Catal 132:210–228

    Article  CAS  Google Scholar 

  33. Nienhaus H, Bergh HS, Gergen B, Majumdar A, Weinberg WH, McFarland EW (1999) Phys Rev Lett 82:446–449

    Article  CAS  Google Scholar 

  34. Ferreira de Morais R, Franco AA, Sautet P, Loffreda D (2015) ACS Catal 5:1068–1077

    Article  CAS  Google Scholar 

  35. Michaelides A, Hu P (2001) J Am Chem Soc 123:4235–4242

    Article  CAS  PubMed  Google Scholar 

  36. Mildner B, Hasselbrink E, Diesing D (2006) Chem Rev Lett 432:133–138

    CAS  Google Scholar 

  37. Trail JR, Graham MC, Bird DM, Persson M, Holloway S (2002) Phys Rev Lett 88:166802

    Article  CAS  PubMed  Google Scholar 

  38. Trail JR, Bird DM, Persson M, Holloway S (2003) J Chem Phys 119:4539–4549

    Article  CAS  Google Scholar 

  39. Park JY, Renzas JR, Contreras AM, Somorjai GA (2007) Top Catal 46:217–222

    Article  CAS  Google Scholar 

  40. Nedrygailov II, Karpov EG, Hasselbrink E, Diesing D (2013) J Vac Sci Tech A 31:021101

    Article  CAS  Google Scholar 

  41. Creighton JR, Coltrin ME (2011) J Phys Chem C 116:1139–1144

    Article  CAS  Google Scholar 

  42. Frese KW, Chen C (1992) J Electrochem Soc 139:3234–3243

    Article  CAS  Google Scholar 

  43. Nedrygailov II, Lee C, Moon SY, Lee H, Park JY (2016) Angew Chem Int Ed 128:11017–11020

    Article  Google Scholar 

  44. Hellsing B, Kasemo B, Ljungström S, Rosén A, Wahnström T (1987) Surf Sci 189/190:851–860

    Article  Google Scholar 

  45. Ljungström S, Kasemo B, Rosén A, Wahnström T, Fridell E (1989) Surf Sci 216:63–92

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (IBS) [IBS-R004].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Young Park.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 495 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Nedrygailov, I.I., Lee, S.W. et al. Isotope Effect of Hot Electrons Generated on Pt Nanoparticle Surfaces Under H2 and D2 Oxidation. Top Catal 61, 915–922 (2018). https://doi.org/10.1007/s11244-018-0947-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0947-9

Keywords

Navigation