Skip to main content

Advertisement

Log in

CO Dissociation on Ni/SiO2: The Formation of Different Carbon Materials

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Activity control for CO dissociation over supported Ni catalysts is very important for steam reforming, CO2 reforming, methanation, carbon formation, and other processes. In this work, a series of Ni/SiO2 catalysts were designed through thermal decomposition or dielectric barrier discharge (DBD) plasma decomposition. After a high temperature reduction, the main difference between the two catalysts was the structure of Ni nanoparticles, instead of the particles size. The plasma decomposed catalyst possesses smooth surface on Ni nanoparticles with less defect sites, leading to the activity control of CO dissociation. DBD plasma decomposed Ni/SiO2 catalysts have a low activity for CO dissociation with a low final carbon yield. The as-produced carbon materials over thermally decomposed or plasma decomposed are in the form of carbon onion particles or carbon nanotubes, separately. The growth mechanism of these two different carbon materials was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu CJ, Ye JY, Jiang JJ, Pan YX (2011) ChemCatChem 3:529–541

    Article  CAS  Google Scholar 

  2. Kameshima S, Tamura K, Ishibashi Y, Nozaki T (2015) Catal Today 256:67–75

    Article  CAS  Google Scholar 

  3. Nozaki T, Okazaki K (2013) Catal Today 211:29–38

    Article  CAS  Google Scholar 

  4. Cheng DG, Zhu XL, Ben YH, He F, Cui L, Liu CJ (2006) Catal Today 115:205–210

    Article  CAS  Google Scholar 

  5. Guo F, Xu JQ, Chu W (2015) Catal Today 256:124–129

    Article  CAS  Google Scholar 

  6. Liu L, Wang S, Guo Y, Wang BL, Rukundo P, Wen SP, Wang ZJ (2016) Int J Hydrog Energy 41:17361–17369

    Article  CAS  Google Scholar 

  7. Pan YX, Kuai PY, Liu Y, Ge QF, Liu CJ (2010) Energy Environ Sci 3:1322–1325

    Article  CAS  Google Scholar 

  8. Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH (2009) J Catal 266:380–390

    Article  CAS  Google Scholar 

  9. Sumi H, Lee YH, Muroyama H, Matsui T, Kamijo M, Mimuro S, Yamanaka M, Nakajima Y, Eguchi K (2011) J Power Sour 196:4451–4457

    Article  CAS  Google Scholar 

  10. Balakos MW, Chuang SSC (1993) React Kinet Catal Lett 49:7–12

    Article  CAS  Google Scholar 

  11. Liu Q, Zhong ZY, Gu FN, Wang XY, Lu XP, Li HF, Xu GW, Su FB (2016) J Catal 337:221–232

    Article  CAS  Google Scholar 

  12. Yan XL, Zhao BR, Liu Y, Li YN (2015) Catal Today 256:29–40

    Article  CAS  Google Scholar 

  13. Bartholomew CH (1982) Catal Rev Sci Eng 24:67–112

    Article  CAS  Google Scholar 

  14. McCarty JG, Wise H (1979) J Catal 57:406–416

    Article  CAS  Google Scholar 

  15. Mirodatos C, Praliaud H, Primet M (1987) J Catal 107:275–287

    Article  CAS  Google Scholar 

  16. Tavares MT, Alstrup I, Bernardo CA, Rostrup-Nielsen JR (1996) J Catal 158:402–410

    Article  CAS  Google Scholar 

  17. Pan YX, Liu CJ, Shi P (2008) J Power Sour 176:46–53

    Article  CAS  Google Scholar 

  18. Zhu XL, Huo PP, Zhang YP, Cheng DG, Liu CJ (2008) Appl Catal B 81:132–140

    Article  CAS  Google Scholar 

  19. Pan YX, Liu CJ, Cui L (2008) Catal Lett 123:96–101

    Article  CAS  Google Scholar 

  20. Zhu XL, Cheng DG, Kuai PY (2008) Energy Fuels 22:1480–1484

    Article  CAS  Google Scholar 

  21. Zhao BR, Yan XL, Zhou Y, Liu CJ (2013) Ind Eng Chem Res 52:8182–8188

    Article  CAS  Google Scholar 

  22. YanXL, Liu Y, Zhao BR, Wang Z, Wang Y, Liu CJ (2013) Int J Hydrog Energy 38:2283–2291

    Article  Google Scholar 

  23. Yan XL, Liu Y, Zhao BR, Wang Y, Liu CJ (2013) Phys Chem Chem Phys 15:12132–12138

    Article  CAS  Google Scholar 

  24. Zhou R, Rui N, Fan ZG, Liu CJ (2016) Int J Hydrogen Energy 41:22017–22025

    Article  CAS  Google Scholar 

  25. Yan XL, Liu CJ (2013) Diam Relat Mater 31:50–57

    Article  CAS  Google Scholar 

  26. Guo QT, With P, Liu Y, Gläser R, Liu CJ (2013) Catal Today 211:156–161

    Article  CAS  Google Scholar 

  27. Liu Y, Wang Z, Liu CJ (2015) Catal Today 256:137–141

    Article  CAS  Google Scholar 

  28. Liu CJ, Li MY, Wang JQ, Zhou XT, Guo QT, Yan JM, Li YZ (2016) Chin J Catal 37:340–348

    Article  CAS  Google Scholar 

  29. Liu Y, Pan YX, Wang ZJ, Kuai PY, Liu CJ (2010) Catal Commun 11:551–554

    Article  CAS  Google Scholar 

  30. Zou JJ, Liu CJ, Zhang YP (2006) Langmuir 22:2334–2339

    Article  CAS  Google Scholar 

  31. Chen Y, Wang B, Li LJ, Yang YH, Ciuparu D, Lim SY, Haller GL, Pfefferle LD (2007) Carbon 45:2217–2228

    Article  CAS  Google Scholar 

  32. Kitiyanan B, Alvarez WE, Harwell JH, Resasco DE (2000) Chem Phys Lett 317:497–503

    Article  CAS  Google Scholar 

  33. Lin W, Moon KS, Zhang SJ, Ding Y, Shang JT, Chen MX, Wong CP (2010) ACS Nano 4:1716–1722

    Article  CAS  Google Scholar 

  34. Reddy ALM, Shaijumon MM, Ramaprabhu S (2006) Nanotechnology 17:5299–5305

    Article  CAS  Google Scholar 

  35. Cao ZS, Qiu L, Yang YZ, Chen YK, Liu XG (2015) Appl Surf Sci 353:873–881

    Article  CAS  Google Scholar 

  36. Zhang Y, Wang W, Wang ZY, Zhou XT, Wang Z, Liu CJ (2015) Catal Today 256:130–136

    Article  CAS  Google Scholar 

  37. Andersson MP, Abild-Pedersen F, Remediakis IN, Bligaard T, Jones G, Engbæk J, Lytken O, Horch S, Nielsen JH, Sehested J, Rostrup-Nielsen JR, Nørskov JK, Chorkendorff I (2008) J Catal 255:6–19

    Article  CAS  Google Scholar 

  38. Wang ZX, Qiao QA, Chen SG, Zhang WX (2002) Surf Sci 517:29–42

    Article  CAS  Google Scholar 

  39. Steinrück HP, Develyn MP, Madix RJ (1986) Surf Sci 172:561–567

    Article  Google Scholar 

  40. Tibbetts GG (1984) J Cryst Growth 66:632–638

    Article  CAS  Google Scholar 

  41. Jiang KL, Feng C, Liu K, Fan SS (2007) J Nanosci Nanotechnol 7:1494–1504

    Article  CAS  Google Scholar 

  42. Nolan PE, Michael JS, Lynch DCS (1995) Carbon 33:79–85

    Article  CAS  Google Scholar 

  43. Nasibulin AG, Moisal A, Brown DP, Kauppinen EI (2003) Carbon 41:2711–2724

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Nos. 21406153, 21406177, 21576177, and 21546009), Shanxi Province Science Foundation for Youths (No. 2014021014-2), the Supported by Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,  Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 14JK1749) and the support from Taiyuan University of Technology (1205-04020202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 421 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Bao, J., Zhao, B. et al. CO Dissociation on Ni/SiO2: The Formation of Different Carbon Materials. Top Catal 60, 890–897 (2017). https://doi.org/10.1007/s11244-017-0754-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0754-8

Keywords

Navigation