Skip to main content
Log in

A Nonlinear Ordinary Differential Equation for Generating Graphical Rate Equations from Concentration Versus Time Data

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

When reaction progress kinetic analysis is implemented on data obtained using a spectroscopic or chromatographic technique such as ATR–FTIR, NMR, absorbance spectroscopy, HPLC or GC, an initial step involves fitting a mathematical function to the experimental concentration versus time data. This function is then differentiated to give graphs of rate versus substrate concentration (graphical rate equations). It is important that the function be able to accurately describe the experimental data without introducing bias or artifacts. Here, we put forward a nonlinear ordinary differential equation that can be fitted to experimental concentration versus time data for applications in reaction progress kinetic analysis. We show that it can be applied to data from catalytic transformations showing diverse types of kinetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Blackmond DG (2005) Reaction progress kinetic analysis: a powerful methodology for mechanistic studies of complex catalytic reactions. Angew Chem Int Ed 44:4302–4320. doi:10.1002/anie.200462544

    Article  CAS  Google Scholar 

  2. Blackmond DG (2015) Kinetic profiling of catalytic organic reactions as a mechanistic tool. J Am Chem Soc 137:10852–10866. doi:10.1021/jacs.5b05841

    Article  CAS  Google Scholar 

  3. Kalow JA, Doyle AG (2011) Mechanistic investigations of cooperative catalysis in the enantioselective fluorination of epoxides. J Am Chem Soc 133:16001–16012. doi:10.1021/ja207256s

    Article  CAS  Google Scholar 

  4. Scott M, Sud A, Boess E, Klussmann M (2014) Reaction progress kinetic analysis of a copper-catalyzed aerobic oxidative coupling reaction with N-phenyl tetrahydroisoquinoline. J Org Chem 79:12033–12040. doi:10.1021/jo5018876

    Article  CAS  Google Scholar 

  5. Ruiz-Castillo P, Blackmond DG, Buchwald SL (2015) Rational ligand design for the arylation of hindered primary amines guided by reaction progress kinetic analysis. J Am Chem Soc 137:3085–3092. doi:10.1021/ja512903g

    Article  CAS  Google Scholar 

  6. Morisaki K, Sawa M, Yonesaki R, Morimoto H, Mashima K, Ohshima T (2016) Mechanistic studies and expansion of the substrate scope of direct enantioselective alkynylation of α-ketiminoesters catalyzed by adaptable (phebox)rhodium(III) complexes. J Am Chem Soc 138:6194–6203. doi:10.1021/jacs.6b01590

    Article  CAS  Google Scholar 

  7. D’Angelo KA, Taylor MS (2016) Borinic acid catalyzed stereo- and regioselective couplings of glycosyl methanesulfonates. J Am Chem Soc 138:11058–11066. doi:10.1021/jacs.6b06943

    Article  Google Scholar 

  8. Ford DD, Lehnherr D, Kennedy CR, Jacobsen EN (2016) On- and off-cycle catalyst cooperativity in anion-binding catalysis. J Am Chem Soc 138:7860–7863. doi:10.1021/jacs.6b04686

    Article  CAS  Google Scholar 

  9. Streuff J, Feurer M, Frey G, Steffani A, Kacprzak S, Weweler J, Leijendekker LH, Kratzert D, Plattner DA (2015) Mechanism of the TiIII-catalyzed acyloin-type umpolung: a catalyst-controlled radical reaction. J Am Chem Soc 137:14396–14405. doi:10.1021/jacs.5b09223

    Article  CAS  Google Scholar 

  10. Yayla HG, Peng F, Mangion IK, McLaughlin M, Campeau LC, Davies IW, DiRocco DA, Knowles RR (2016) Discovery and mechanistic study of a photocatalytic indoline dehydrogenation for the synthesis of elbasvir. Chem Sci 7:2066–2073. doi:10.1039/c5sc03350k

    Article  CAS  Google Scholar 

  11. O’Brien AG, Luca OR, Baran PS, Blackmond DG (2016) In situ FTIR spectroscopic monitoring of electrochemically controlled organic reactions in a recycle reactor. React Chem Eng 1:90–95. doi:10.1039/c5re0050e

    Article  Google Scholar 

  12. Koelewijn JM, Lutz M, Dzik WI, Detz RJ, Reek JNH (2016) Reaction progress kinetic analysis as a tool to reveal ligand effects in Ce(IV)-driven IrCp*-catalyzed water oxidation. ACS Catal 6:3418–3427. doi:10.1021/acscatal.6b00297

    Article  CAS  Google Scholar 

  13. Baxter RD, Sale D, Engle KM, Yu J-Q, Blackmond DG (2012) Mechanistic rationalization of unusual kinetics in Pd-catalyzed C–H olefination. J Am Chem Soc 134:4600–4606. doi:10.1021/ja207634t

    Article  CAS  Google Scholar 

  14. Burés J (2016) A simple graphical method to determine the order in catalyst. Angew Chem Int Ed 55:2028–2031. doi:10.1002/anie.201508983

    Article  Google Scholar 

  15. Burés J (2016) Variable time normalization analysis: general graphical elucidation of reaction orders from concentration profiles. Angew Chem. doi:10.1002/anie.201609757

    Google Scholar 

  16. Ji Y, Benkovics T, Beutner GL, Sfouggatakis C, Eastgate MD, Blackmond DG (2015) Mechanistic insights into the vanadium-catalyzed Achmatowicz rearrangement of furfurol. J Org Chem 80:1696–1702. doi:10.1021/jo502641d

    Article  CAS  Google Scholar 

  17. Romanov-Michailidis F, Romanova-Michaelides M, Pupier M, Alexakis A (2015) Enantioselective halogenative semi-pinacol rearrangement: extension of substrate scope and mechanistic investigations. Chemistry 21:5561–5583. doi:10.1002/chem.201406133

    Article  CAS  Google Scholar 

  18. Tanveer K, Jarrah K, Taylor MS (2015) Borinic acid catalyzed, regioselective chloroacylations and chlorosulfonylations of 2,3-epoxy alcohols. Org Lett 17:3482–3485. doi:10.1021/acs.orglett.5b01541

    Article  CAS  Google Scholar 

  19. Garrett GE, Tanveer K, Taylor MS (2017) Mechanism of an organoboron-catalyzed domino reaction: kinetic and computational studies of borinic acid-catalyzed regioselective chloroacylation of 2,3-epoxy alcohols. J Org Chem 82:1085–1095. doi:10.1021/acs.joc.6b02702

    Article  CAS  Google Scholar 

  20. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI: a complex pathway simulator. Bioinformatics 22:3067–3074. doi:10.1093/bioinformatics/btl485

    Article  CAS  Google Scholar 

  21. Soai K, Shibata T, Morioka H, Choji N (1995) Asymmetric organocatalysis and amplification of enantiomeric excess of a chiral molecule. Nature 378:767–768. doi:10.1038/378767a0

    Article  CAS  Google Scholar 

  22. Hein JE, Gherase D, Blackmond DG (2013) Chemical and physical models for the emergence of biological homochirality. Top Curr Chem 333:83–108. doi:10.1007/128_2012_397

    Article  CAS  Google Scholar 

  23. Gehring T, Quaranta M, Odell B, Blackmond DG, Brown JM (2015) Observation of a transient intermediate in Soai’s asymmetric autocatalysis: insights from 1H NMR turnover in real time. Angew Chem Int Ed 51:9539–9542. doi:10.1002/anie.201203398

    Article  Google Scholar 

  24. Kennedy CR, Lehnherr D, Rajapaksa NS, Ford DD, Park Y, Jacobsen EN (2016) Mechanism-guided development of a highly active bis-thiourea catalyst for anion-abstraction catalysis. J Am Chem Soc 138:13525–13528. doi:10.1021/jacs.6b09205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSERC (Discovery Grant and Canada Research Chairs Programs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Taylor.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 6034 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrett, G.E., Taylor, M.S. A Nonlinear Ordinary Differential Equation for Generating Graphical Rate Equations from Concentration Versus Time Data. Top Catal 60, 554–563 (2017). https://doi.org/10.1007/s11244-017-0739-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0739-7

Keyword

Navigation