Skip to main content
Log in

CO Hydrogenation to Higher Alcohols over Cu–Co-Based Catalysts Derived from Hydrotalcite-Type Precursors

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cu–Co-based catalysts derived from hydrotalcite (HT)-type precursors were applied in higher alcohol synthesis (HAS) at 280 °C, 60 bar and a H2/CO ratio of 1/1. Catalysts with higher Cu/Co ratios were found to provide the best trade-off between selective alcohol formation and moderate Fischer–Tropsch synthesis (FTS) activity. Within the alcohols and hydrocarbons formed the productivities decreased exponentially with increasing chain length according to the ASF distribution indicating a chain growth mechanism. Thermal analysis revealed the presence of different bivalent cations in one single HT-type precursor phase. After calcination at lower temperatures (Tcalc < 600 °C) a carbonate-modified ZnAl2O4 matrix was obtained. Within this amorphous matrix Cu2+ and Co2+ were found to be partially embedded resulting in an impeded ion reduction. After HAS the presence of bulk Co2C was detected by XRD. Both close contact of Cu0 and Co0 as well as Co2C–Co0 interfaces are known to provide the mechanistic requirements for higher alcohol formation. For comparison HAS was performed over a physical mixture consisting of the Al-containing HTs of Cu, Co or Zn. For the simultaneously co-precipitated samples the major roles of Cu are to decrease the FTS activity of metallic Co and to lower the alcohol chain growth probability by intimate Cu0–Co0 interactions. With increasing Cu content the alcohol selectivities were found to increase at the expense of high conversion, with ethanol being the major oxygenate product for all HT-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsai Y-T, Mo X, Campos A, Goodwin JG Jr, Spivey JJ (2011) Appl Catal A 396:91

    Article  CAS  Google Scholar 

  2. Nunan JG, Herman RG, Klier K (1989) J Catal 116:222

    Article  CAS  Google Scholar 

  3. Baker JE, Burch R, Golunski SE (1989) Appl Catal A 53:279

    Article  CAS  Google Scholar 

  4. Courty P, Durand D, Freund E, Sugier A (1982) J Mol Catal 17:241

    Article  CAS  Google Scholar 

  5. Marchi AJ, Di Cosimo JI, Apesteguía CR (1992) Catal Today 15:383

    Article  CAS  Google Scholar 

  6. Behrens M, Kasatkin I, Kühl S, Weinberg G (2010) Chem Mater 22:386

    Article  CAS  Google Scholar 

  7. Kühl S, Tarasov A, Zander S, Kasatkin I, Behrens M (2014) Chem Eur J 20:3782

    Article  Google Scholar 

  8. Zhu K, Liu C, Ye X, Wu Y (1998) Appl Catal A 168:365

    Article  CAS  Google Scholar 

  9. Turco M, Bagnasco G, Costantino U, Marmottini F, Montanari T, Ramis G, Busca G (2004) J Catal 228:43

    CAS  Google Scholar 

  10. Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis G (2006) Appl Catal A 310:70

    Article  CAS  Google Scholar 

  11. Costantino U, Marmottini F, Sisani M, Montanari T, Ramis G, Busca G, Turco M, Bagnasco G (2005) Solid State Ionics 176:2917

    Article  CAS  Google Scholar 

  12. Espinal R, Taboada E, Molins E, Chimentao RJ, Medina F, Llorca J (2012) RSC Adv 2:2946

    Article  CAS  Google Scholar 

  13. Ginés MJL, Amadeo N, Laborde M, Apesteguía CR (1995) Appl Catal A 131:283

    Article  Google Scholar 

  14. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2008) Appl Catal A 337:48

    Article  CAS  Google Scholar 

  15. Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  16. Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514

    Article  CAS  Google Scholar 

  17. Subramani V, Gangwal SK (2008) Energy Fuels 22:814

    Article  CAS  Google Scholar 

  18. Anton J, Ruland H, Kaluza S, Muhler M (2015) Catal Lett 145:1374

    Article  CAS  Google Scholar 

  19. Rives V, Dubey A, Kannan S (2001) Phys Chem Chem Phys 3:4826

    Article  CAS  Google Scholar 

  20. Alejandre A, Medina F, Rodriguez X, Salagre P, Sueiras JE (1999) J Catal 188:311

    Article  CAS  Google Scholar 

  21. Kannan S, Bevy LP (eds) (2006) Trends in catalysis research: hydrotalcites as potential catalysts for hydroxylation of phenol. Nova Science Publishers, New York

    Google Scholar 

  22. Velu S, Suzuki K, Hashimoto S, Satoh N, Ohashi F, Tomura S (2001) J Mater Chem 11:2049

    Article  CAS  Google Scholar 

  23. Kannan S, Swamy CS (1992) J Mater Sci Lett 11:1585–1587

    Article  CAS  Google Scholar 

  24. Liu Q, Wang B, Wang C, Tian Z, Qu W, Ma H, Xu R (2014) Green Chem 16:2604

    Article  CAS  Google Scholar 

  25. Montanari T, Sisani M, Nocchetti M, Vivani R, Delgado MCH, Ramis G, Busca G, Costantino U (2010) Catal Today 152:104

    Article  CAS  Google Scholar 

  26. Alejandre A, Medina F, Salagre P, Correig X, Sueiras JE (1999) Chem Mater 11:939

    Article  CAS  Google Scholar 

  27. Lwin Y, Mohamad A, Yaakob Z, Daud W (2000) React Kinet Catal L 70:303–310

    Article  CAS  Google Scholar 

  28. Anton J, Nebel J, Song H, Froese C, Weide P, Ruland H, Muhler M, Kaluza S (2016) J Catal 335:175–186

    Article  CAS  Google Scholar 

  29. Günter MM, Ressler T, Jentoft RE, Bems B (2001) J Catal 203:133

    Article  Google Scholar 

  30. Naumann d’Alnoncourt R, Xia X, Strunk J, Löffler E, Hinrichsen O, Muhler M (2006) Phys Chem Chem Phys 8:1525

  31. Kasatkin I, Kurr P, Kniep B, Trunschke A, Schlögl R (2007) Angew Chem Int Ed 119:7465

    Article  Google Scholar 

  32. Behrens M, Furche A, Kasatkin I, Trunschke A, Busser W, Muhler M, Kniep B, Fischer R, Schlögl R (2010) Chem Cat Chem 2:816

    CAS  Google Scholar 

  33. Volkova G, Yurieva T, Plyasova L, Naumova M, Zaikovskii V (2000) J Mol Catal A 158:389

    Article  CAS  Google Scholar 

  34. Pei Y-P, Liu J-X, Zhao Y-H, Ding Y-J, Liu T, Dong W-D, Zhu H-J, Su H-Y, Yan L, Li J-L, Li W-X (2015) ACS Catal 5:3620

    Article  CAS  Google Scholar 

  35. Xiaoding X, Scholten JJF, Mausbeck D (1992) Appl Catal A 82:91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kaluza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anton, J., Nebel, J., Göbel, C. et al. CO Hydrogenation to Higher Alcohols over Cu–Co-Based Catalysts Derived from Hydrotalcite-Type Precursors. Top Catal 59, 1361–1370 (2016). https://doi.org/10.1007/s11244-016-0663-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-016-0663-2

Keywords

Navigation