Skip to main content
Log in

Electrocatalytic Properties of Carbon Nanotubes Decorated with Copper and Bimetallic CuPd Nanoparticles

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Copper particles were deposited on the surface of palladium decorated buckypapers by the means of chemical plating, in which the palladium nanoparticles act as catalyst for initiating the reduction of complexed Cu2+ ions in the presence of formaldehyde. By adjusting the plating time, it is possible to tune the size of the highly crystalline copper particles and at the same time control the coverage of the metal on the surface of carbon nanotubes. In a subsequent step, the copper particles were partially exchanged with palladium to obtain bimetallic CuPd nanoparticles on the nanotubes by applying galvanic replacement reactions in aqueous solution of Pd2+ ions. Sufficiently high electrical conductivity of both Cu and CuPd/buckypaper composites makes them suitable to be used as electrocatalytic electrodes. The electrochemical properties of the different electrode materials were also evaluated by the model reaction of methanol electrooxidation. The degradation mechanism of copper and CuPd bimetallic catalysts were systematically studied by employing surface characterization techniques on the composite films after electrocatalytic testing in alkaline solution in the presence and absence of methanol. Chronoamperometric test of the catalysts/buckypaper composites had revealed that palladium plays a protecting role in CuPd bimetallic structure during methanol electrooxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP (2006) J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  2. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14–31

    Article  CAS  Google Scholar 

  3. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  4. Kreuer KD (2001) J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

  5. Yu AM, Liang ZJ, Cho J, Caruso F (2003) Nano Lett 3:1203–1207

    Article  CAS  Google Scholar 

  6. Uosaki K, Sato Y, Kita H (1991) Langmuir 7:1510–1514

    Article  CAS  Google Scholar 

  7. Guo SJ, Wang EK (2007) Anal Chim Acta 598:181–192

    Article  CAS  Google Scholar 

  8. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Electrochim Acta 53:5848–5866

    Article  CAS  Google Scholar 

  9. Guo SJ, Wen D, Zhai YM, Dong SJ, Wang EK (2010) ACS Nano 4:3959–3968

    Article  CAS  Google Scholar 

  10. Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Anal Chem 76:1083–1088

    Article  CAS  Google Scholar 

  11. Huang JS, Liu Y, Hou HQ, You TY (2008) Biosens Bioelectron 24:632–637

    Article  CAS  Google Scholar 

  12. Miedaner A, Curtis CJ, Barkley RM, Dubois DL (1994) Inorg Chem 33:5482–5490

    Article  CAS  Google Scholar 

  13. Heli H, Jafarian M, Mahjani MG, Gobal F (2004) Electrochim Acta 49:4999–5006

    Article  CAS  Google Scholar 

  14. Karim-Nezhad G, Dizajdizi BZ, Dorraji PS (2011) Catal Commun 12:906–909

    Article  CAS  Google Scholar 

  15. Venkatasubramanian R, He J, Johnson MW, Stern I, Kim DH, Pesika NS (2013) Langmuir 29:13135–13139

    Article  CAS  Google Scholar 

  16. Periasamy AP, Liu JF, Lin HM, Chang HT (2013) J Mater Chem A 1:5973–5981

    Article  CAS  Google Scholar 

  17. Xu D, Liu ZP, Yang HZ, Liu QS, Zhang J, Fang JY, Zou SZ, Sun K (2009) Angew Chem Int Ed 48:4217–4221

    Article  CAS  Google Scholar 

  18. Zhu CZ, Guo SJ, Dong SJ (2012) Adv Mater 24:2326–2331

    Article  CAS  Google Scholar 

  19. Su L, Shrestha S, Zhang ZH, Mustain W, Lei Y (2013) J Mater Chem A 1:12293–12301

    Article  CAS  Google Scholar 

  20. Liu ZL, Zhang XH, Hong L (2009) Electrochem Commun 11:925–928

    Article  CAS  Google Scholar 

  21. Wang M, Zhang WM, Wang JZ, Minett A, Lo V, Liu HK, Chen J (2013) J Mater Chem A 1:2391–2394

    Article  CAS  Google Scholar 

  22. Yu FJ, Zhou WZ, Bellabarba RM, Tooze RP (2014) Nanoscale 6:1093–1098

    Article  CAS  Google Scholar 

  23. Hu CG, Guo YM, Wang JL, Yang L, Yang ZX, Bai ZY, Zhang J, Wang K, Jiang K (2012) ACS Appl Mater Interfaces 4:4461–4464

    Article  CAS  Google Scholar 

  24. Shih ZY, Wang CW, Xu GB, Chang HT (2013) J Mater Chem A 1:4773–4778

    Article  CAS  Google Scholar 

  25. Xia BY, Wu HB, Wang X, Lou XW (2012) J Am Chem Soc 134:13934–13937

    Article  CAS  Google Scholar 

  26. Dhavale VM, Unni SM, Kagalwala HN, Pillai VK, Kurungot S (2011) Chem Comm 47:3951–3953

    Article  CAS  Google Scholar 

  27. Li HH, Cui CH, Zhao S, Yao HB, Gao MR, Fan FJ, Yu SH (2012) Adv Energy Mater 2:1182–1187

    Article  CAS  Google Scholar 

  28. Xu CX, Liu YQ, Wang JP, Geng HR, Qiu HJ (2011) ACS App Mater Interfaces 3:4626–4632

    Article  CAS  Google Scholar 

  29. Cui CH, Li HH, Liu XJ, Gao MR, Yu SH (2012) Acs Catal 2:916–924

    Article  CAS  Google Scholar 

  30. Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y (2008) J Am Chem Soc 130:13818–13819

    Article  CAS  Google Scholar 

  31. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) J Am Chem Soc 128:8813–8819

    Article  CAS  Google Scholar 

  32. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  33. Zhang J, Yang HZ, Martens B, Luo ZP, Xu D, Wang YX, Zou SZ, Fang JY (2012) Chem Sci 3:3302–3306

    Article  CAS  Google Scholar 

  34. Leino AR, Mohl M, Kukkola J, Maki-Arvela P, Kokkonen T, Shchukarev A, Kordas K (2013) Carbon 57:99–107

    Article  CAS  Google Scholar 

  35. Mohl M, Dobo D, Kukovecz A, Konya Z, Kordas K, Wei J, Vajtai R, Ajayan PM (2011) J Phys Chem C 115:9403–9409

    Article  CAS  Google Scholar 

  36. Mohl M, Kumar A, Reddy ALM, Kukovecz A, Konya Z, Kiricsi I, Vajtai R, Ajayan PM (2010) J Phys Chem C 114:389–393

    Article  CAS  Google Scholar 

  37. Ramasubramanian M, Popov BN, White RE, Chen KS (1998) J Appl Electrochem 28:737–743

    Article  CAS  Google Scholar 

  38. Schoenberg LN (1971) J Electrochem Soc 118:1571–1576

    Article  CAS  Google Scholar 

  39. Duffy J, Pearson L, Paunovic M (1983) J Electrochem Soc 130:876–880

    Article  CAS  Google Scholar 

  40. Paunovic M (1978) J Electrochem Soc 125:173–174

    Article  CAS  Google Scholar 

  41. Fleischmann M, Korinek K, Pletcher D (1972) J Chem Soc Perkin Trans 2:1396–1403

    Article  Google Scholar 

  42. Burke LD, Odwyer KJ (1991) Electrochim Acta 36:1937–1945

    Article  CAS  Google Scholar 

  43. Miller B (1969) J Electrochem Soc 116:1675–1680

    Article  CAS  Google Scholar 

  44. Shams EI, Din AM, EI Wahab FMA (1964) Electrochim Acta 9:113–121

    Article  Google Scholar 

  45. Reyter D, Odziemkowski M, Belanger D, Roue L (2007) J Electrochem Soc 154:K36–K44

    Article  CAS  Google Scholar 

  46. Wen XG, Xie YT, Choi CL, Wan KC, Li XY, Yang SH (2005) Langmuir 21:4729–4737

    Article  CAS  Google Scholar 

  47. Fredj N, Burleigh TD (2011) J Electrochem Soc 158:C104–C110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The contributors acknowledge financial support received from project Susfoflex (EU FP7, 289829), HIPPOCAMP (EU FP7, 608800), VOCSENSOR (M-ERA.NET, OTKA, NN110676) and HYNA (Academy of Finland, 286009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krisztian Kordas.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, JF., Mohl, M., Toth, G. et al. Electrocatalytic Properties of Carbon Nanotubes Decorated with Copper and Bimetallic CuPd Nanoparticles. Top Catal 58, 1119–1126 (2015). https://doi.org/10.1007/s11244-015-0480-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0480-z

Keywords

Navigation