Skip to main content
Log in

The Effect of Al Buffer Layer on the Catalytic Synthesis of Carbon Nanotube Forests

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This study aims to reveal the effect of an Al buffer layer on the catalytic synthesis of carbon nanotube (CNT) forests. Thin films of Al buffer with thicknesses of 2, 5, 10, and 20 nm were deposited on copper, brass, stainless steel, Inconel® 600, silicon and alumina substrates under an Fe catalyst layer of 1 nm thickness. CNTs were synthesized from acetylene using hydrogen as a reducing gas at 660 °C in a low pressure chemical vapor deposition system. Vertically well-aligned CNTs were obtained on all substrates when an Al buffer layer of at least 10 nm was applied. The structure of the Al buffer layer and the nanotube forests were studied using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The effect of the Al buffer layer on the electrical properties of the substrate–buffer–catalyst–nanotube structures was evaluated by current–voltage measurements. Supercapacitor devices constructed from the nanotube forests grown on various types of conductive substrates were also studied. The specific capacitance of the double-layer capacitor electrodes was found to be ~10 F/g which is in the same range that we have measured in the absence of an Al buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bacsa W (2003) In: Bushan B (ed) Springer handbook of nanotechnology, 3rd edn. Springer, Berlin

    Google Scholar 

  2. Halonen N, Kordas K, Toth G, Mustonen T, Mäklin J, Vähäkangas J, Ajayan PM, Vajtai R (2008) J Phys Chem C 112:6723

    Article  CAS  Google Scholar 

  3. Jung YJ, Wei BQ, Vajtai R, Ajayan PM (2003) Nano Lett 3:561

    Article  CAS  Google Scholar 

  4. Wei BQ, Vajtai R, Jung Y, Ward J, Zhang R, Ramanath G, Ajayan PM (2002) Nature 416:495

    Article  CAS  Google Scholar 

  5. de los Arcos T, Garnier M, Seo J, Oelhafen P, Thommen V, Mathys D (2004) J Phys Chem B 108:7728

    Article  Google Scholar 

  6. Lin W, Zhang R, Moon KS, Wong CP (2010) IEEE Trans Adv Pack 33:370

    Article  CAS  Google Scholar 

  7. Zhang R, Amlani L, Baker J, Tresek J, Tsui R (2003) Nano Lett 3:731

    Article  CAS  Google Scholar 

  8. Emmenegger C, Bonard JM, Mauron P, Sudan P, Lepora A, Grobety B, Züttel A, Schlapbach L (2003) Carbon 41:539

    Article  CAS  Google Scholar 

  9. Choi BH, Yoo H, Kim YB, Lee JH (2010) Microelectron Eng 87:1500

    Article  CAS  Google Scholar 

  10. Liu H, Zhang Y, Arato D, Li R, Mérel P, Sun X (2008) Surf Coat Tech 202:4114

    Article  CAS  Google Scholar 

  11. Cho W, Schulz M, Shanov V (2014) Carbon 72:264

    Article  CAS  Google Scholar 

  12. Emmenegger C, Mauron P, Züttel A, Nützenadel C, Schneuwly A, Gallay R, Schlapbach L (2000) Appl Surf Sci 162:452

    Article  Google Scholar 

  13. Khavrus V, Weiser M, Fritsch M, Ummethala R, Salvaggio MG, Schneider M, Kusnezoff M, Leonhardt A (2012) Chem Vap Depos 13:53

    Article  Google Scholar 

  14. Dörfler S, Felhösi I, Marek T, Thieme S, Althues H, Nyikos L, Kaskel S (2013) J Power Sour 227:218

    Article  Google Scholar 

  15. Talapatra S, Kar S, Pal S, Vajtai R, Ci L, Victor P, Shaijumon MM, Kaur S, Nalamasu O, Ajayan PM (2006) Nat Nanotechnol 1:110

    Article  Google Scholar 

  16. Pal S, Talapatra S, Kar S, Vajtai R, Ci L, Borca-Tasciuc T, Schadler L, Ajayan PM (2008) Nanotechnology 19:045610

    Article  CAS  Google Scholar 

  17. Halonen N, Mäklin J, Rautio A-R, Kukkola J, Uusimäki A, Toth G, Reddy LM, Vajtai R, Ajayan PM, Kordas K (2013) Chem Phys Lett 583:87

    Article  CAS  Google Scholar 

  18. Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Iijima S (2006) Nat Nanotechnol 1:131

    Article  CAS  Google Scholar 

  19. Kordás K, Tóth G, Moilanen P, Kumpumäki M, Vähäkangas J, Uusimäki A, Vajtai R, Ajayan PM (2007) Appl Phys Lett 90:123105

    Article  Google Scholar 

  20. Tóth G, Mäklin J, Halonen N, Palosaari J, Juuti J, Jantunen H, Kordás K, Sawyer WG, Vajtai R, Ajayan PM (2009) Adv Mater 21:2054

    Article  Google Scholar 

  21. Mäklin J, Halonen N, Pitkänen O, Tóth G, Kordás K (2014) Appl Therm Eng 65:539

    Article  Google Scholar 

  22. Sridhar S, Tiwary C, Vinod S, Taha-Tijerina JJ, Sridhar S, Kalaga K, Sirota B, Hart AHC, Ozden S, Sinha RK, Harsh, Vajtai R, Choi W, Kordás K, Ajayan PM (2014) ACS Nano 8:7763

    Article  CAS  Google Scholar 

  23. Sridhar S, Ge L, Tiwary CS, Hart AC, Ozden S, Kalaga K, Lei S, Sridhar SV, Sinha RK, Harsh H, Kordas K, Ajayan PM, Vajtai R (2014) ACS Appl Mater Interface 6:1986

    Article  CAS  Google Scholar 

  24. Seah CA, Chai SP, Mohammed AR (2011) Carbon 49:4613

    Article  CAS  Google Scholar 

  25. Dolgopolov NA, Rodin AO, Simanov AV, Gontar IG (2009) Russ J Non Ferr Met 50:133

    Article  Google Scholar 

  26. Eremenko VN, Natanzon Y, Titov VP (1978) Soviet Mater Sci 14:579

    Article  Google Scholar 

  27. Ohashi T, Kato R, Tokune T, Kawarad H (2013) Carbon 57:401

    Article  CAS  Google Scholar 

  28. Wang X, Wood JV, Sui Y, Lu H (1998) J Shanghai Univ 2:305

    Article  Google Scholar 

  29. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Phys Chem Chem Phys 9:1276

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.-R. Rautio is grateful for the support from the GETA. The work is partly financed by the projects Hippocamp (EU FP7) and Hyna (Academy of Finland). The support received from the Micro- and Nano-technology Center, University of Oulu is acknowledged. We would like to also thank Ms. Jessica McVey for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kordás.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitkänen, O., Lorite, G.S., Shi, G. et al. The Effect of Al Buffer Layer on the Catalytic Synthesis of Carbon Nanotube Forests. Top Catal 58, 1112–1118 (2015). https://doi.org/10.1007/s11244-015-0479-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0479-5

Keywords

Navigation