Skip to main content
Log in

Catalytic Activity and Accessibility of Acidic Ion-Exchange Resins in Liquid Phase Etherification Reactions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Although macroreticular acidic ion-exchange resins have been widely used as catalysts in the industrial world for decades, their catalytic behavior is still far from being completely understood at a molecular level. Several characterization techniques coexist, which provide information about their properties. Only few of these techniques give an actual picture of their working-state features when swollen in anhydrous polar reactive media such as in etherification processes, where they are extensively used. The inverse steric exclusion chromatography technique, based on modeling the micropores structure, or gel-phase, as a set of discrete volume fractions with a characteristic polymer chain density, constitutes an appropriate procedure to assess the morphology of ion-exchangers in the swollen state. Present work proposes an empirical model to correlate the properties of the volume fractions with their catalytic activity in the etherification reaction rates of isobutene by addition of C1–C4 linear primary alcohols. Sixteen different macroreticular acidic ion-exchange catalysts, both commercial and lab-made, have been used, which differ in acid capacity, sulfonation type, cross-linking degree and swollen-phase volume fractions distribution. Experimental reaction rates have been expressed as a sum of contributions of each individual volume fraction. The contribution of each polymer volume fraction corresponds to the product of the catalyst acidity, the characteristic volume fraction within the gel-phase of the catalyst, and a specific turnover frequency of that fraction. Accessibility of the reacting alcohol, expressed in terms of the Ogston coefficient, has been also included in the empirical dependency equation presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691. doi:10.1126/science.1083671

    Article  CAS  Google Scholar 

  2. Corain B, Zecca M, Jeřábek K (2001) Catalysis and polymer networks: the role of morphology and molecular accessibility. J Mol Catal A 177:3–20. doi:10.1016/S1381-1169(01)00305-3

    Article  CAS  Google Scholar 

  3. Schlick S, Bortel E, Dyrek K (1996) Catalysis on polymer supports. Acta Polym 47:1–15. doi:10.1002/actp.1996.010470101

    Article  CAS  Google Scholar 

  4. Fité C, Tejero J, Iborra M et al (1998) The effect of the reaction medium on the kinetics of the liquid-phase addition of methanol to isobutene. Appl Catal A Gen 169:165–177. doi:10.1016/S0926-860X(98)00005-2

    Article  Google Scholar 

  5. Rihko-Struckmann LK, Latostenmaa PV, Krause AOI (2001) Interaction between the reaction medium and an ion-exchange resin catalyst in the etherification of isoamylenes. J Mol Catal A 177:41–47. doi:10.1016/S1381-1169(01)00308-9

    Article  CAS  Google Scholar 

  6. Jeřábek K (1985) Determination of pore volume distribution from size exclusion chromatography data. Anal Chem 57:1595–1597. doi:10.1021/ac00285a022

    Article  Google Scholar 

  7. Jeřábek K (1985) Characterization of swollen polymer gels using size exclusion chromatography. Anal Chem 57:1598–1602. doi:10.1021/ac00285a023

    Article  Google Scholar 

  8. Crispin T, Halász I (1982) Determination of the pore size distribution, by exclusion chromatography, of ion-exchange polymers which swell in water. J Chromatogr A 239:351–362. doi:10.1016/S0021-9673(00)81994-9

    Article  CAS  Google Scholar 

  9. Jeřábek K, Hanková L, Prokop Z, Lundquist EG (2002) Relations between morphology and catalytic activity of ion exchanger catalysts for synthesis of bisphenol A. Appl Catal A Gen 232:181–188. doi:10.1016/S0926-860X(02)00099-6

    Article  Google Scholar 

  10. Ahn JH, Ihm SK, Park KS (1988) The effects of the local concentration and distribution of sulfonic acid groups on 1-butene isomerization catalyzed by macroporous ion-exchange resin catalysts. J Catal 113:434–443. doi:10.1016/0021-9517(88)90269-2

    Article  CAS  Google Scholar 

  11. Buttersack C (1989) Accessibility and catalytic activity of sulfonic acid ion-exchange resins in different solvents. React Polym 10:143–164. doi:10.1016/0923-1137(89)90022-5

    Article  Google Scholar 

  12. Coutinho FM, Souza RR, Gomes AS (2004) Synthesis, characterization and evaluation of sulfonic resins as catalysts. Eur Polym J 40:1525–1532. doi:10.1016/j.eurpolymj.2004.02.003

    Article  CAS  Google Scholar 

  13. Ihm SK, Chung MJ, Park KY (1988) Activity difference between the internal and external sulfonic groups of macroreticular ion-exchange resin catalysts in isobutylene hydration. Ind Eng Chem Res 27:41–45. doi:10.1021/ie00073a009

    Article  CAS  Google Scholar 

  14. Chee SY, Gan SN (2008) Swelling properties of copolymers of styrene and divinylbenzene containing sulfonic and carboxylic acid groups. J Appl Polym Sci. doi:10.1002/app

    Google Scholar 

  15. Ancillotti F, Massi Mauri M, Pescarollo E (1977) Ion exchange resin catalyzed addition of alcohols to olefins. J Catal 46:49–57. doi:10.1016/0021-9517(77)90134-8

    Article  CAS  Google Scholar 

  16. Ancillotti F, Massi Mauri M, Pescarollo E, Romagnoni L (1978) Mechanisms in the reaction between olefins and alcohols catalyzed by ion exchange resins. J Mol Catal 4:37–48. doi:10.1016/0304-5102(78)85033-0

    Article  CAS  Google Scholar 

  17. Jeřábek K (1981) Polymer structure and catalytic activity of ion exchangers. Collect Czechoslov Chem Commun 46:1577–1587. doi:10.1135/cccc19811577

    Article  Google Scholar 

  18. Holub L, Jeřábek K (2005) Influence of partial neutralization on catalytic activity of ion exchange resin. J Mol Catal A 231:21–26. doi:10.1016/j.molcata.2004.12.029

    Article  CAS  Google Scholar 

  19. Hanková L, Holub L, Jeřábek K (2006) Relation between functionalization degree and activity of strongly acidic polymer supported catalysts. React Funct Polym 66:592–598. doi:10.1016/j.reactfunctpolym.2005.10.011

    Article  Google Scholar 

  20. Guilera J, Hanková L, Jeřábek K et al (2014) Influence of the functionalization degree of acidic ion-exchange resins on ethyl octyl ether formation. React Funct Polym 78:14–22. doi:10.1016/j.reactfunctpolym.2014.02.007

    Article  CAS  Google Scholar 

  21. González R (2011) Performance of Amberlyst TM 35 in the synthesis of ETBE from ethanol and C 4 cuts. Dissertation 281

  22. Iborra M, Tejero J, Cunill F et al (2000) Drying of acidic macroporous styrene–divinylbenzene resins with 12–20 cross-linking degree. Ind Eng Chem Res 39:1416–1422. doi:10.1021/ie9904807

    Article  CAS  Google Scholar 

  23. Cunill F, Vila M, Izquierdo JF et al (1993) Effect of water presence on methyl tert-butyl ether and ethyl tert-butyl ether liquid-phase syntheses. Ind Eng Chem Res 32:564–569. doi:10.1021/ie00015a020

    Article  CAS  Google Scholar 

  24. Izquierdo JF, Cunill F, Vila M et al (1994) Equilibrium constants for methyl tert-butyl ether and ethyl tert-butyl ether liquid-phase syntheses using C4 olefinic cut. Ind Eng Chem Res 33:2830–2835. doi:10.1021/ie00035a036

    Article  CAS  Google Scholar 

  25. Iborra M, Tejero J, Ben El-Fassi M et al (2002) Experimental study of the liquid-phase simultaneous syntheses of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Ind Eng Chem Res 41:5359–5365. doi:10.1021/ie010640q

    Article  CAS  Google Scholar 

  26. Pla R, Tejero J, Cunill F, et al (2000) Effect of internal diffusion on liquid-phase synthesis of MTBE. In: 12th International Congress Catalog. Elsevier, pp 2609–2614

  27. Tejero J, Cunill F, Izquierdo JF et al (1996) Scope and limitations of mechanistic inferences from kinetic studies on acidic macroporous resins The MTBE liquid-phase synthesis case. Appl Catal A Gen 134:21–36. doi:10.1016/0926-860X(95)00191-3

    Article  CAS  Google Scholar 

  28. Jeřábek K, Hanková L, Holub L (2010) Working-state morphologies of ion exchange catalysts and their influence on reaction kinetics. J Mol Catal A 333:109–113. doi:10.1016/j.molcata.2010.10.004

    Article  Google Scholar 

  29. Albright RL (1986) Porous polymers as an anchor for catalysis. React Polym Ion Exch Sorbents 4:155–174. doi:10.1016/0167-6989(86)90010-3

    Article  CAS  Google Scholar 

  30. Bringué R, Ramírez E, Iborra M et al (2013) Influence of acid ion-exchange resins morphology in a swollen state on the synthesis of ethyl octyl ether from ethanol and 1-octanol. J Catal 304:7–21. doi:10.1016/j.jcat.2013.03.006

    Article  Google Scholar 

  31. Guilera J, Ramírez E, Fité C et al (2013) Thermal stability and water effect on ion-exchange resins in ethyl octyl ether production at high temperature. Appl Catal A Gen 467:301–309. doi:10.1016/j.apcata.2013.07.024

    Article  CAS  Google Scholar 

  32. López DE, Goodwin JG, Bruce DA, Lotero E (2005) Transesterification of triacetin with methanol on solid acid and base catalysts. Appl Catal A Gen 295:97–105. doi:10.1016/j.apcata.2005.07.055

    Article  Google Scholar 

  33. Jeřábek K (2013) Ion exchanger catalysts. Kem Ind 62:171–176

    Google Scholar 

Download references

Acknowledgments

The authors thank Rohm and Haas France SAS (The Dow Chemical Company) and Purolite for providing Amberlyst and CT ion exchange resins, respectively. We are also indebted to Ms. Júlia Athayde for her participation in part of the experimental work. Finally, the authors would like to express their deepest gratefulness to Dr. Karel Jeřábek for providing the ISEC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fité.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badia, J.H., Fité, C., Bringué, R. et al. Catalytic Activity and Accessibility of Acidic Ion-Exchange Resins in Liquid Phase Etherification Reactions. Top Catal 58, 919–932 (2015). https://doi.org/10.1007/s11244-015-0460-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0460-3

Keywords

Navigation