Skip to main content

Advertisement

Log in

Efficient Conversion of Glycerol to a H2 Rich Gas Mixture by Steam Reforming Over NiLaZr Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Glycerol is a side product of biodiesel production which is available in the world market at relatively low cost and could be used to obtain other valuable products. H2 and H2-CO mixtures can be obtained from glycerol by steam reforming using Ni based catalysts. NiLaZr catalysts prepared by a coprecipitation technique were tested in the steam reforming of pure glycerol. The tests were performed at 500 and 650 °C and at glycerol:water molar ratios 1:6 and 1:12. Glycerol conversion to gas phase products and H2 yields were greatly improved with the increase of Ni loading from 5 to 15 %. The addition of 0.5 % of Rh is also very effective at low temperature to attain almost total glycerol conversions and high H2 yields. The catalyst containing 15 % of Ni and the NiO and La2Zr2O7 phases showed the best catalytic performance with glycerol conversion above 99 % and a H2 yield close to the thermodynamic value at 650 °C. This catalyst also showed the best results in term of stability and low carbon formation. Fast deactivation of the Rh impregnated catalyst is ascribed to its ability to yield carbon by dissociation of C–C and C–H bonds in glycerol and other C1–C3 intermediates. Carbon morphology is greatly influenced by Ni interactions with the rest of the catalyst structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vertés AA, Qureshi N, Blaschek HP, Yukawa H (eds) (2010) Biomass to biofuels: strategies for global industries. Wiley, Chichester

    Google Scholar 

  2. Karam A (2010) Le glycérol, une matière première renouvelable pour la préparation catalytique de nouveaux bioproduits. Thesis de l’Université de Poitiers

  3. Stelmachowski M (2011) Utilization of glycerol, a by-product of the transesterification process of vegetable oils: a review. Ecol Chem Eng 18(1):9–30

    CAS  Google Scholar 

  4. Steinmetz SA, Herrington JS, Winterrowd ChK, Roberts WL, Wendt JOL, William Linak P (2013) Crude glycerol combustion: particulate, acrolein, and other volatile organic emissions. P Combust Inst 34:2749–2757

    Article  CAS  Google Scholar 

  5. Zhang Y, Dubé M, McLean D, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240

    Article  CAS  Google Scholar 

  6. Adhikari S, Fernando SD, Haryanto A (2009) Hydrogen production from glycerol: an update. Energ Convers Manag 50:2600–2604

    Article  CAS  Google Scholar 

  7. Vaidya PD, Rodrigues AE (2009) Glycerol reforming for hydrogen production: a review. Chem Eng Technol 32(10):1463–1469

    Article  CAS  Google Scholar 

  8. Ramírez de la Piscina P, Homs N (2008) Use of biofuels to produce hydrogen (reformation processes). Chem Soc Rev 37:2459–2467

    Article  Google Scholar 

  9. Simonetti DA, Rass-Hansen J, Kunkes EL, Soares RR, Dumesic JA (2007) Coupling of glycerol processing with Fischer-Tropsch synthesis for production of liquid fuels. Green Chem 9(10):1073–1083

    Article  CAS  Google Scholar 

  10. Dou B, Song Y, Wang Ch, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sustain Energy Rev 30:950–960

    Article  CAS  Google Scholar 

  11. Adhikari S, Fernando SD, Gwaltney SR, Filip To SD, Bricka RM, Steele PH, Haryanto A (2007) Thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int J Hydrog Energy 32:2875–2880

    Article  CAS  Google Scholar 

  12. Dieuzeide ML, Amadeo N (2010) Thermodynamic analysis of glycerol steam reforming. Chem Eng Technol 33(1):89–96

    Article  CAS  Google Scholar 

  13. Chen H, Ding Y, Cong NT, Dou B, Dupont V, Ghadiri M, Williams PT (2011) A comparative study on hydrogen production from steam-glycerol reforming: thermodynamics and experimental. Renew Energy 36(2):779–788

    Article  CAS  Google Scholar 

  14. Rossi CCRS, Alonso CG, Antunes OAC, Guirardello R, Cardozo-Filho L (2009) Thermodynamic analysis of steam reforming of ethanol and glycerine for hydrogen production. Int J Hydrog Energy 34:323–332

    Article  CAS  Google Scholar 

  15. Adhikari S, Fernando SD, Haryanto A (2007) Production of hydrogen by steam reforming of glycerin over alumina-supported metal catalysts. Catal Today 129:355–364

    Article  CAS  Google Scholar 

  16. Iriondo A, Barrio VL, Cambra JF, Arias PL, Guemez MB, Navarro RM, Sánchez-Sánchez MC, Fierro JLG (2008) Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Top Catal 49:46–58

    Article  CAS  Google Scholar 

  17. Adhikari S, Fernando SD, Haryanto A (2008) Hydrogen production from glycerin by steam reforming over nickel catalysts. Renew Energy 33:1097–1100

    Article  CAS  Google Scholar 

  18. Vaidya PD, Rodrigues AE (2006) Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chem Eng J 117:39–49

    Article  CAS  Google Scholar 

  19. Martinez LM, Araque M, Vargas JC, Roger A-C (2013) Effect of Ce/Zr ratio in CeZr-CoRh catalysts on the hydrogen production by glycerol steam reforming. Appl Catal B 132:499–510

    Article  Google Scholar 

  20. Nahar G, Dupont V (2014) Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts: review. Renew Sustain Energy Rev 32:777–796

    Article  CAS  Google Scholar 

  21. Buffoni IN, Pompeo F, Santori GF, Nichio NN (2009) Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catal Commun 10:1656–1660

    Article  CAS  Google Scholar 

  22. Franchini CA, Aranzaez W, Duarte de Farias AM, Pecchi G, Fraga MA (2014) Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Appl Catal B 147:193–202

    Article  CAS  Google Scholar 

  23. Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int J Hydrog Energy 40:2529–2544

    Article  CAS  Google Scholar 

  24. Zs Ferencz, Erdőhely A, Baán K, Oszkó A, Óvári L, Kónya Z, Papp C, Steinrück H-P, Kiss J (2014) Effects of Support and Rh Additive on Co-based catalysts in the ethanol steam reforming reaction. ACS Catal 4:1205–1218

    Article  Google Scholar 

  25. Araque M, Martínez LM, Vargas JC, Centeno MA, Roger A-C (2012) Effect of the active metals on the selective H2 production in glycerol steam reforming. Appl Catal B 125:556–566

    Article  CAS  Google Scholar 

  26. Castro Luna E, Becerra AM, Dimitrijewits MI (1999) Methane steam reforming over rhodium promoted Ni/Al2O3 catalysts. React Kinet Catal Lett 67(2):247–252

    Article  Google Scholar 

  27. Bussi J, Bespalko N, Veiga S, Amaya A, Faccio R, Abello C (2008) The preparation of NiLaZr catalysts for the steam reforming of ethanol. Catal Commun 10:33–38

    Article  CAS  Google Scholar 

  28. Bussi J, Musso M, Veiga S, Bespalko N, Faccio R, Roger A-C (2013) Ethanol steam reforming over NiLaZr and NiCuLaZr mixed metal oxide catalysts. Catal Today 213:42–49

    Article  CAS  Google Scholar 

  29. Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrog Energy 32:2367–2373

    Article  CAS  Google Scholar 

  30. Facility for the analysis of chemical thermodynamics. Equilib-web, Fact-web. http://www.crct.polymtl.ca/equiwebmenu.php. Accessed 10 Mar 2015

  31. Nyman BJ, Björketun ME, Wahnström G (2011) Substitutional doping and oxygen vacancies in La2Zr2O7 pyrochlore oxide. Solid State Ion 189:19–28

    Article  CAS  Google Scholar 

  32. Thyssen VV, Maia TA, Assaf EM (2013) Ni supported on La2O3–SiO2 used to catalyze glycerol steam reforming. Fuel 105:358–363

    Article  CAS  Google Scholar 

  33. Pompeo F, Santori GF, Nichio NN (2011) Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts. Catal Today 172(1):183–188

    Article  CAS  Google Scholar 

  34. Corma A, Huber GW, Sauvanaud L, O’Connor P (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257:163–171

    Article  CAS  Google Scholar 

  35. Rostrup-Nielsen J, Bak Hansen J-H (1993) CO2-reforming of methane over transition metals. J Catal 144:38–49

    Article  CAS  Google Scholar 

  36. Breen JP, Burch R, Coleman HM (2002) Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications. Appl Catal B 39:65–74

    Article  CAS  Google Scholar 

  37. Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R (2005) Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl Catal B 61:130–139

    Article  CAS  Google Scholar 

  38. Bespalko N, Roger A-C, Bussi J (2011) Comparative study of NiLaZr and CoLaZr catalysts for hydrogen production by ethanol steam reforming: Effect of CO2 injection to the gas reactants. Evidence of Rh role as a promoter. Appl Catal A 407(1–2):204–210

    Article  CAS  Google Scholar 

  39. Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A 381:1–7

    Article  CAS  Google Scholar 

  40. Barbier J, Duprez D (1994) Steam effects in three-way catalysis. Appl Catal B 4:105–140

    Article  CAS  Google Scholar 

  41. Kunkes E, Soares R, Simonetti D, Dumesic J (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B 90:693–698

    Article  CAS  Google Scholar 

  42. Song H, Ozkan US (2009) Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J Catal 261:66–74

    Article  CAS  Google Scholar 

  43. Vagia ECh, Lemonidou AA (2010) Investigations on the properties of ceria–zirconia-supported Ni and Rh catalysts and their performance in acetic acid steam reforming. J Catal 269:388–396

    Article  CAS  Google Scholar 

  44. Doukkali ME, Iriondo A, Arias PL, Cambra JF, Gandarias I, Barrio VL (2012) Bioethanol/glycerol mixture steam reforming over Pt and PtNi supported on lanthana or ceria doped alumina catalysts. Int J Hydrogen Energy 37:8298–8309

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by a Research project supported by the Sectorial Commission for Scientific Research (CSIC–UdelaR) and by the National Program for the Development of Basic Sciences (PEDECIBA–PNUD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bussi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veiga, S., Bussi, J. Efficient Conversion of Glycerol to a H2 Rich Gas Mixture by Steam Reforming Over NiLaZr Catalysts. Top Catal 59, 186–195 (2016). https://doi.org/10.1007/s11244-015-0444-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0444-3

Keywords

Navigation