Skip to main content
Log in

Production of Phenol and Cresol from Guaiacol on Nickel Phosphide Catalysts Supported on Acidic Supports

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Partial hydrodeoxygenation (HDO) of bio-oil derived from the pyrolysis of lignin can yield higher value added products, such as phenol derivatives. The HDO of 2-methoxyphenol (guaiacol) was studied over nickel phosphide (Ni2P) supported on various acidic substrates. The substrates were the microporous zeolite ZSM-5, a fluidized catalytic cracking (FCC) support consisting of USY zeolite embedded in a silica–alumina matrix, and an amorphous silica–alumina (ASA) material. Guaiacol was used as reactant because it is a good model compound for species derived from the lignin portion of biomass. The order of activity was Ni2P/ASA > Ni2P/FCC > Ni2P/ZSM-5. Contact time measurements indicated that the main pathway on Ni2P/ASA, the most active catalyst, was conversion of guaiacol to the primary intermediate catechol, which was then dehydroxylated to phenol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99

    Article  CAS  Google Scholar 

  2. Bulushev DA, Ross JRH (2011) Catalysis for conversion of biomass to fuels via pyrolysis and gasification: a review. Catal Today 171:1–13

    Article  CAS  Google Scholar 

  3. Panwar NL, Kothari R, Tyagi VV (2012) Thermo chemical conversion of biomass-Eco friendly energy routes. Renew Sustain Energy Rev 16:1801–1813

    Article  CAS  Google Scholar 

  4. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  5. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19

    Article  CAS  Google Scholar 

  6. Mohan D, Pittman CU, Steele P (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

    Article  CAS  Google Scholar 

  7. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    Article  CAS  Google Scholar 

  8. Custodis YBF, Hemberger P, Ma Z, van Bokhoven JA (2014) Mechanism of fast pyrolysis of lignin: studying model compounds. J Phys Chem B 118:8524–8531

    Article  CAS  Google Scholar 

  9. Ruinard de Brimont M, Dupont C, Daudin A, Geantet C, Raybaud P (2012) Deoxygenation mechanisms on Ni-promoted MoS2 bulk catalysts: a combined experimental and theoretical study. J Catal 286:153–164

    Article  Google Scholar 

  10. Ryymin E-M, Honkela ML, Viljava T-R, Krause AOI (2009) Insight to sulfur species in the hydrodeoxygenation of aliphatic esters over sulfided NiMo/γ-Al2O3 catalyst. Appl Catal A 358:42–48

    Article  CAS  Google Scholar 

  11. Centeno A, Laurent E, Delmon B (1995) Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl, and guaiacol-type molecules. J Catal 154:288–298

    Article  CAS  Google Scholar 

  12. Romero Y, Richard F, Brunet S (2010) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B 98:213–223

    Article  CAS  Google Scholar 

  13. Jongerius AL, Jastrzebski R, Bruijnincx PCA, Weckhuysen BM (2011) CoMo sulfide-catalyzed hydrodeoxygenation of lignin model compounds: an extended reaction network for the conversion of monomeric and dimeric substrates. J Catal 285:315–323

    Article  Google Scholar 

  14. Van Ngoc Bui VN, Laurenti D, Afanasiev P, Geantet C (2011) Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity. Appl Catal B 101:239–245

    Article  Google Scholar 

  15. Chang J, Danuthai T, Dewiyanti S, Wang C, Borgna A (2013) Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts. ChemCatChem 5:3041–3049

    Article  CAS  Google Scholar 

  16. Nakagawa Y, Ishikawa M, Tamura M, Tomishige K (2014) Selective production of cyclohexanol and methanol from guaiacol over Ru catalyst combined with MgO. Green Chem 16:2197–2203

    Article  CAS  Google Scholar 

  17. Bussell M, Prins R (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436

    Article  Google Scholar 

  18. Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107

    Article  CAS  Google Scholar 

  19. Oyama ST (2003) Novel catalysts for advanced hydroprocessing: transition metal phosphides. J Catal 216:343–352

    Article  CAS  Google Scholar 

  20. Oyama ST, Zhao H, Freund H-J, Asakura K, Włodarczyk R, Sierka M (2012) Unprecedented selectivity to the direct desulfurization (DDS) pathway in a highly active FeNi bimetallic phosphide catalyst. J Catal 285:1–5

    Article  Google Scholar 

  21. Gaudette AF, Burns AW, Hayes JR, Smith MC, Bowker RH, Seda T, Bussell ME (2010) Mössbauer spectroscopy investigation and hydrodesulfurization properties of iron-nickel phosphide catalysts. J Catal 272:18–27

    Article  CAS  Google Scholar 

  22. Hayes JR, Bowker RH, Gaudette AF, Smith MC, Moak CE, Nam CY, Pratum TK, Bussell ME (2010) Hydrodesulfurization properties of rhodium phosphide: comparison with rhodium metal and sulfide catalysts. J Catal 276:249–258

    Article  CAS  Google Scholar 

  23. Korányi TI, Pfeifer E, Mihály J, Föttinger K (2008) Infrared spectroscopic investigation of CO adsorption on SBA-15- and KIT-6-supported nickel phosphide hydrotreating catalysts. J Phys Chem A 112:5126–5136

    Article  Google Scholar 

  24. Lee Y-K, Oyama ST (2006) Bifunctional nature of a SiO2-supported Ni2P catalyst for hydrotreating: EXAFS and FTIR studies. J Catal 239:376–389

    Article  CAS  Google Scholar 

  25. Oyama ST, Clark P, Wang X, Shido T, Iwasawa Y, Hayashi S, Ramallo-Lopez JM, Requejo FG (2002) Structural characterization of tungsten phosphide (WP) hydrotreating catalysts by X-ray absorption spectroscopy and nuclear magnetic resonance spectroscopy. J Phys Chem B 106:1913–1920

    Article  CAS  Google Scholar 

  26. Lee YK, Shu Y, Oyama ST (2007) Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT. Appl Catal A 322:191–201

    Article  CAS  Google Scholar 

  27. Rodriguez JA, Kim JY, Hanson JC, Sawhill SJ, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6286

    Article  CAS  Google Scholar 

  28. Sun F, Wu W, Wu Z, Guo J, Wei Z, Yang Y, Jiang Z, Tian F, Li C (2004) Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and NiMoP catalysts. J Catal 228:298–310

    Article  CAS  Google Scholar 

  29. Bowker RH, Carrillo BA, Ilic B, Reynolds MA, Bussell ME (2014) Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts. Appl Catal A 482:221–230

    Article  CAS  Google Scholar 

  30. Abu II, Smith KJ (2007) HDN and HDS of model compounds and light gas oil derived from athabasca bitumen using supported metal phosphide catalysts. Appl Catal A 328:58–68

    Article  CAS  Google Scholar 

  31. Zuzaniuk V, Prins R (2003) Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts. J Catal 219:85–96

    Article  CAS  Google Scholar 

  32. Clark P, Wang X, Deck P, Oyama ST (2002) Push-pull mechanism of hydrodenitrogenation over silica supported MoP, WP, and MoS2 hydroprocessing catalysts. J Catal 210:116–126

    Article  CAS  Google Scholar 

  33. Ariga H, Kawashima M, Takakusagi S, Asakura K, Ariga H, Kawashima M, Takakusagi S, Asakura K (2013) Density function theoretical investigation on the Ni3PP structure and the hydrogen adsorption property of the Ni2P(0001) surface. Chem Lett 42:1481–1483

    Article  CAS  Google Scholar 

  34. Zhao HY, Li D, Bui P, Oyama ST (2011) Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl Catal A 391:305–310

    Article  CAS  Google Scholar 

  35. Moon J-S, Kim E-G, Lee Y-K (2014) Active sites of Ni2P/SiO2 catalyst for hydrodeoxygenation of guaiacol: a joint XAFS and DFT study. J Catal 311:144–152

    Article  CAS  Google Scholar 

  36. Iino A, Cho A, Takagaki A, Kikuchi R, Oyama ST (2014) Kinetic studies of hydrodeoxygenation of 2-methyltetrahydrofuran on a Ni–2P/SiO2 catalyst at medium pressure. J Catal 311:17–27

    Article  CAS  Google Scholar 

  37. Shin J, Cho A, Takagaki A, Kikuchi R, Oyama ST (2012) Ligand and ensemble effects in bimetallic NiFe phosphide catalysts for the hydrodeoxygenation of 2-methyltetrahydrofuran. Top Catal 55:969–980

    Article  Google Scholar 

  38. Bui P, Cecilia JA, Oyama ST, Takagaki A, Infantes-Molina A, Zhao H, Li D, Rodríguez-Castellón E, Jiménez López A (2012) Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J Catal 294:184–198

    Article  CAS  Google Scholar 

  39. Cecilia JA, Infantes-Molina A, Rodríguez-Castellón E, Jiménez-López A, Oyama ST (2013) Oxygen-removal from dibenzofuran as a model compound in biomass derived bio-oil on nickel phosphide catalysts: role of phosphorus. Appl Catal B 136–137:140–149

    Article  Google Scholar 

  40. Whiffen VML, Smith KJ, Straus SK (2012) The influence of citric acid on the synthesis and activity of high surface area MoP for the hydrodeoxygenation of 4-methylphenol. Appl Catal A 419:111–121

    Article  Google Scholar 

  41. Rensel DJ, Rouvimov S, Gin ME, Hicks JC (2013) Highly selective bimetallic FeMoP catalyst for C–O bond cleavage of aryl ethers. J Catal 305:256–263

    Article  CAS  Google Scholar 

  42. Li D, Bui P, Zhao HY, Oyama ST, Dou T, Shen ZH (2012) Rake mechanism for the deoxygenation of ethanol over a supported Ni2P/SiO2 catalyst. J Catal 290:1–12

    Article  CAS  Google Scholar 

  43. Ausavasukhi A, Huang Y, To AT, Sooknoi T, Resasco DE (2012) Hydrodeoxygenation of m-cresol over gallium-modified beta zeolite catalysts. J Catal 290:90–100

    Article  CAS  Google Scholar 

  44. Clark PA, Wang X, Oyama ST (2002) Characterization of silica supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy. J Catal 207:256–265

    Article  CAS  Google Scholar 

  45. Wang X, Clark P, Oyama ST (2002) Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides. J Catal 208:321–331

    Article  CAS  Google Scholar 

  46. Shu Y, Lee Y-K, Oyama ST (2005) Structure-sensitivity of hydrodesulfurization of 4,6-dimethyldibenzothiophene over silica-supported nickel phosphide catalysts. J Catal 236:112–121

    Article  CAS  Google Scholar 

  47. Knözinger H (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of Heterogeneous Catalysis, Vol. 2, Wiley-VCH, Weinheim, p 1154

  48. Bando KK, Saito T, Sato K, Tanaka T, Dumeignil F, Imamura M, Matsubayashi N, Shimada H (2002) In-situ XAFS analysis of Y zeolite-supported Rh catalysts during high-pressure hydrogenation of CO2. Top Catal 18:59–65

    Article  CAS  Google Scholar 

  49. Li W, Dhandapani B, Oyama ST (1998) Molybdenum phosphide: a novel catalyst for hydrodenitrogenation. Chem Lett 27:207–208

    Article  Google Scholar 

  50. Zhang X, Wang R, Yang X, Zhang F (2008) Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction. Microp Mesop Mater 116:210–215

    Article  CAS  Google Scholar 

  51. Janssen AH, Koster AJ, de Jong KP (2001) Microscopic observations of mesopores in dealuminated zeolite Y Angew. Chem Int Ed 40:1102–1104

    Article  CAS  Google Scholar 

  52. Cho K, Seo H, Lee Y-K (2011) A new synthesis of highly active Ni2P/Al2O3 catalyst by liquid phase phosphidation for deep hydrodesulfurization. Catal Commun 12:470–474

    Article  CAS  Google Scholar 

  53. Bando KK, Koike Y, Kawai T, Tateno G, Oyama ST, Inada Y, Nomura M, Asakura K (2011) Quick X-ray absorption fine structure studies on the activation process of Ni2P supported on K-USY. J Phys Chem C 115:7466–7471

    Article  CAS  Google Scholar 

  54. Teixeira da Silva V, Sousa LA, Amorim RM, Andrini L, Figueroa SJA, Requejo FG, Vicentini FC (2011) Lowering the synthesis temperature of Ni2P/SiO2 by palladium addition. J Catal 279:88–102

    Article  CAS  Google Scholar 

  55. Bando KK, Wada T, Miyamoto T, Miyazaki K, Takakusagi S, Gott T, Yamaguchi A, Nomura M, Oyama ST, Asakura K (2009) Combined in situ analysis of Ni2P/MCM-41 under hydrodesulfurization conditions—simultaneous observation of QXAFS and FTIR. J Phys 190:012158. doi:10.1088/1742-6596/190/1/012158

    Google Scholar 

  56. Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) Desulfurization reactions on Ni2P(001) and & #x03B1;-Mo2C(001) surfaces: complex role of P and C sites. J Phys Chem B 109:4575–4583

    Article  CAS  Google Scholar 

  57. Wildschut J, Mahfud F, Venderbosch R, Heeres H (2009) Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind Eng Chem Res 48:10324–10334

    Article  CAS  Google Scholar 

  58. Radhakrishnan R, Reed C, Oyama ST, Seman M, Kondo JN, Domen K, Ohminami Y, Asakura K (2001) Variability in the structure of supported MoO3 catalysts: studies using Raman and X-ray absorption spectroscopy with ab initio calculations. J Phys Chem B 105:8519–8530

    Article  CAS  Google Scholar 

  59. Sepulveda C, Escalona N, Garcia R, Laurenti D, Vrinat M (2012) Hydrodeoxygenation and hydrodesulfurization co-processing over ReS2 supported catalyst. Catal Today 195:101–105

    Article  CAS  Google Scholar 

  60. Sepulveda C, Escalona N, Garcia R, Laurenti D, Massin L, Vrinat M (2011) Unexpected support effect in hydrotreating: evidence of a metallic character for ReS2/Al2O3 and ReS2/SiO2 catalysts. Catal Lett 141:987–995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Ministry of Agriculture, Forestry, and Fisheries (MAFF) and JSPS KAKENHI Grant No. 26289301, the National Science Foundation under Grant CHE-1361842 and the US Department of Energy under Grant DE-FG02-96ER14669. The XAFS experiments were conducted under approval of PF-PAC (Project No. 2012G655).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ted Oyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ted Oyama, S., Onkawa, T., Takagaki, A. et al. Production of Phenol and Cresol from Guaiacol on Nickel Phosphide Catalysts Supported on Acidic Supports. Top Catal 58, 201–210 (2015). https://doi.org/10.1007/s11244-015-0361-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0361-5

Keywords

Navigation