Skip to main content

Advertisement

Log in

Overview: Status of the Microwave-Based Automotive Catalyst State Diagnosis

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The oxygen loading degree in TWCs, the amount of stored ammonia in SCR catalysts, the NOx loading degree in LNTs, or the soot loading of DPFs play a key role in automotive exhaust gas aftertreatment. Today’s methods determine the catalyst state indirectly. They utilize gas sensors installed up- or downstream of the catalysts and the catalyst state is inferred from the sensor signals. This overview reports on the status of an alternative approach based on the interaction of electromagnetic microwaves with the catalyst material. Since the catalyst state is strongly correlated with the electrical properties of the catalyst material itself, this concept shows a great potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Moos R (2010) Sensors 10:6773

    Article  CAS  Google Scholar 

  2. Moos R, Zimmermann C, Birkhofer T, Knezevic A, Plog C, Busch MR, Ried T (2008) SAE paper 2008-01-0447, doi: 10.4271/2008-01-0447

  3. Reiß S, Wedemann M, Moos R, Rösch M (2009) Top Catal 52:1898

    Article  Google Scholar 

  4. Reiß S, Spörl M, Hagen G, Fischerauer G, Moos R (2011) IEEE Sens J 11:434–438

    Article  Google Scholar 

  5. Hagen G, Piontkowski A, Müller A, Brüggemann D, Moos R, IEEE SENSORS 2011 Conference, Limerick, 28–31 Oct 2011, doi: 10.1109/ICSENS.2011.6126979

  6. Fischerauer G, Spörl M, Gollwitzer A, Wedemann M, Moos R (2008) Frequenz 62:180

    Article  Google Scholar 

  7. Fischerauer G, Spörl M, Reiß S, Moos R (2010) Tech Mess 77:419

    Article  CAS  Google Scholar 

  8. Matsumoto S (2004) Catal. Today 90:183

    Article  CAS  Google Scholar 

  9. Kašpar J, Fornasiero P, Hickey N (2003) Catal. Today 77:419

    Article  Google Scholar 

  10. Riegel J, Neumann H, Wiedenmann H-M (2002) Solid Stat. Ionics 152–153:783

    Article  Google Scholar 

  11. Tuller HL, Nowick AS (1979) J Electrochem. Soc. 126:209

    Article  CAS  Google Scholar 

  12. Boaro M, Trovarelli A, Hwang J-H, Mason TO (2002) Solid Stat. Ionics 147:85

    Article  CAS  Google Scholar 

  13. Izu N, Itoh T, Shin W, Matsubara I, Murayama N (2008) Sens. Actuators B 130:466

    Article  CAS  Google Scholar 

  14. Möller R, Votsmeier M, Onder C, Guzzella L, Gieshoff J (2009) Appl. Catal. B Environ. 91:30

    Article  Google Scholar 

  15. Baunach T, Schänzlin K, Diehl L (2006) Sauberes Abgas durch Keramiksensoren. Physik J. 5(5):33–38

    Google Scholar 

  16. Reiß S, Direkte Zustandssensorik von Automobilabgaskatalysatoren (Direct diagnosis of automotive exhaust gas catalysts), Doctoral Thesis, Universität Bayreuth, Bayreuth, 2012, ISBN: 978-3-8440-0841-8

  17. Reiß S, Wedemann M, Spörl M, Fischerauer G, Moos R (2011) Sens. Lett. 9:316–320

    Article  Google Scholar 

  18. Beulertz G, Votsmeier M, Herbst F, Moos R, Replacing the lambda probe by radio frequency-based in operando three-way catalyst oxygen loading detection, The 14th International Meeting on Chemical Sensors, IMCS 14, Nuremberg, 20–23 May 2012, doi: 10.5162/IMCS2012/P2.2.7

  19. Beulertz G, Fritsch M, Fischerauer G, Herbst F, Gieshoff J, Votsmeier M, Hagen G, Moos R (2013, in press) Top Catal. doi:10.1007/s11244-013-9987-3

  20. Koebel M, Elsener M, Kleemann M (2000) Catal. Today 59:335

    Article  CAS  Google Scholar 

  21. Kröcher O, Devadas M, Elsener M, Wokaun A, Söger N, Pfeifer M, Demel Y, Mussmann L (2006) Appl. Catal. B Environ. 66:208

    Article  Google Scholar 

  22. Nova I, Ciardelli C, Tronconi E, Chatterjee D, Bandl-Konrad B (2006) Catal. Today 114:3

    Article  CAS  Google Scholar 

  23. Busca G, Lietti L, Ramis G, Berti F (1998) Appl. Catal. B Environ. 18:1

    Article  CAS  Google Scholar 

  24. Ciardelli C, Nova I, Tronconi E, Chatterjee D, Bandl-Konrad B, Weibel M, Krutzsch B (2007) Appl. Catal. B Environ. 70:80

    Article  CAS  Google Scholar 

  25. Kröcher O, Elsener M (2008) Appl. Catal. B 75:215

    Google Scholar 

  26. Schuler A, Votsmeier M, Kiwic P, Gieshoff J, Hauptmann W, Drochner A, Vogel H (2009) Chem. Eng. J. 154:333

    Article  CAS  Google Scholar 

  27. Kubinski DJ, Visser JH (2008) Sens. Actuators B 130:425

    Article  CAS  Google Scholar 

  28. Simon U, Flesch U, Maunz W, Müller R, Plog C (1998) Micropor. Mesopor. Mater 21:111

    Article  CAS  Google Scholar 

  29. Reiß S, Schönauer D, Hagen G, Fischerauer G, Moos R (2011) Chem Eng Technol 34:791

    Article  Google Scholar 

  30. Roy S, Baiker A (2009) Chem. Rev. 109:4054

    Article  CAS  Google Scholar 

  31. Groß A, Bishop SR, Yang DJ, Tuller HL, Moos R (2012) Solid Stat. Ionics 225:317–323

    Article  Google Scholar 

  32. Groß A, Beulertz G, Marr I, Kubinski DJ, Visser JH, Moos R (2012) Sensors 12:2831

    Article  Google Scholar 

  33. Moos R, Wedemann M, Spörl M, Reiß S, Fischerauer G (2009) Top Catal. 52:2035

    Article  CAS  Google Scholar 

  34. Fremerey P, Reiß S, Geupel A, Fischerauer G, Moos R (2011) Sensors 11:8261–8280

    Article  CAS  Google Scholar 

  35. Casapu M, Grunwaldt JD, Maciejewski M, Baiker A, Eckhoff S, Göbel U, Wittrock M (2007) J. Cat. 251:28

    Article  CAS  Google Scholar 

  36. Nagy LL, Eddy DS, O’Rourke MJ US Patent Specification US 4,477,771, 1984

  37. Ochs T, Schittenhelm H, Genssle A, Kamp B (2010) SAE paper 2010-01-0307, doi: 10.4271/2010-01-0307

  38. Hagen G, Feistkorn C, Wiegärtner S, Heinrich A, Brüggemann D, Moos R (2010) Sensors 10:1589

    Article  CAS  Google Scholar 

  39. Walton FB, Kempster RW US Patent Specification 5,157,340, 1992

  40. Walton FB. US Patent Specification US 5,497,099, 1996

  41. Knitt AA, DeCou MT US Patent Specification US 7,253,641, 2007

  42. Walton FB US Patent Specification US 7,157,919, 2007

  43. Kulkarni VP, Leustek ME, Michels SK, Nair RN, Snopko MA, Knitt AA US Patent 2012/0017570 A1, 2012

  44. Gonze EV, Kirby KW, Phelps A, Gregoire DJ. US Patent 2010/0180577A1, 2010

  45. Davenport DM, Lofgren J US Patent Application 2011/0074440A1, 2011

  46. Bromberg L, Sappok A, Parker R, Koert P, Wong V US Patent Specification 7,679,374, 2010

  47. Sappok A, Bromberg L, Parks J, Prikhodko V (2010) SAE paper 2010-01-2126, doi:10.4271/2010-01-2126

  48. Fischerauer G, Förster MR, Moos R (2010) Meas. Sci. Technol. 21:035108

    Google Scholar 

  49. Feulner M, Hagen G, Piontkowski A, Müller, A, Fischerauer G, Brüggemann D, Moos R (2013, in press) Top Catal. doi:10.1007/s11244-013-0002-9

  50. Hansson, J., Ingeström, V. (2012) A method for estimating soot load in a DPF using an RF-based sensor, Master Thesis, U of Linköping, Linköping

Download references

Acknowledgments

The authors are indebted to the German Research Foundation (DFG) for financial support under grant numbers MO 1060/6-2, MO 1060/13-1, FI 956/3-2, and FI 956/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Moos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moos, R., Beulertz, G., Reiß, S. et al. Overview: Status of the Microwave-Based Automotive Catalyst State Diagnosis. Top Catal 56, 358–364 (2013). https://doi.org/10.1007/s11244-013-9980-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-9980-x

Keywords

Navigation