Skip to main content
Log in

Enhanced Activity via Surface Modification of Fe-Based Fischer–Tropsch Catalyst Precursor with Titanium Butoxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The surface of a model iron catalyst precursor was modified with titanium butoxide to introduce Fe–O–Ti interactions in a controlled manner and to investigate the role of these interactions in the catalyst. The reduction of the model catalyst precursors in hydrogen at 350 °C for 16 h leads to the formation of α-Fe and an iron–titanium mixed oxide, due to the incorporation of Ti into the iron oxide structure. The α-Fe phase is transformed into χ-Fe5C2 during the Fischer–Tropsch synthesis at 250 °C, whilst the Fe–Ti mixed oxide phase is preserved. A higher reaction temperature of 300 °C is required to transform some the oxide phase into a carbide phase under Fischer–Tropsch conditions. The intrinsic activity of the iron carbide phase in samples also containing the Fe–Ti mixed oxide phase is at a reaction temperature of 250 °C ca. 20 % more active than in the sample, which does not contain the mixed oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis BH (2007) Ind Eng Chem Res 46:8939–8945

    Article  Google Scholar 

  2. van Berge P, Everson RC (1997) Stud Surf Sci Catal 107:207–212

    Article  Google Scholar 

  3. Xu L, Bao S, O’Brien RJ, Raje A, Davis BH (1998) ChemTech 28:47–53

    CAS  Google Scholar 

  4. van Steen E, Claeys M (2008) Chem Eng Technol 31:655–666

    Article  Google Scholar 

  5. Govender NS, Janse van Vuuren J, Claeys M, van Steen E (2006) Ind Eng Chem Res 45:8629–8633

    Article  CAS  Google Scholar 

  6. Davis BH (2003) Catal Today 84:83–98

    Article  CAS  Google Scholar 

  7. Dry ME (1981) In: Anderson JR, Boudart M (eds) Catalysis, science and technology, vol 1. Springer, Berlin, pp 159–255

    Google Scholar 

  8. O’Brien RJ, Xu L, Spicer RL, Bao S, Milburn DR, Davis BH (1997) Catal Today 36:325–334

    Article  Google Scholar 

  9. Pham HM, Datye AK (2000) Catal Today 58:233–240

    Article  CAS  Google Scholar 

  10. Mogorosi RP, Fischer N, Claeys M, van Steen E (2012) J Catal 289:140–150

    Article  CAS  Google Scholar 

  11. Chonco ZH, Lodya L, Claeys M, van Steen E (2013) J Catal. doi:10.1016/j.jcat.2013.08.012

    Google Scholar 

  12. Qing M, Yang Y, Wu B, Xu J, Zhang C, Gao P, Li Y (2011) J Catal 279:111–122

    Article  CAS  Google Scholar 

  13. Bukur DB, Lang X, Mukesh D, Zimmerman WH, Rosynek MP, Li C (1990) Ind Eng Chem Res 29:1558–1599

    Article  Google Scholar 

  14. Jun K-W, Roh H-S, Kim K-S, Ryu J-S, Lee K-W (2004) Appl Catal A Gen 259:221–226

    Article  CAS  Google Scholar 

  15. Gokcebay H, Schulz H (1983) EP 0071770 A2

  16. Arai H, Mitshuishi K, Seiyama T (1984) Chem Lett 1291–1294

  17. van der Kraan AM, Nonnekens RCH, Stoop F, Niemantsverdriet JW (1986) Appl Catal 27:285–298

    Article  Google Scholar 

  18. Ishihara T, Eguchi K, Arai H (1988) Appl Catal 40:87–100

    Article  CAS  Google Scholar 

  19. Fiato RA, Kugler EL (1987) US 4689313 A

  20. Duvenhage DJ, Coville NJ (2002) Appl Catal A Gen 233:63–75

    Article  CAS  Google Scholar 

  21. Burch R, Flambard AR (1982) J Catal 78:389–405

    Article  CAS  Google Scholar 

  22. Vannice MA, Sudhakar C (1984) J Phys Chem 88:2429–2432

    Article  CAS  Google Scholar 

  23. Raupp GB, Dumesic JA (1984) J Phys Chem 88:660–663

    Article  CAS  Google Scholar 

  24. Barkhuizen D, Mabaso I, Viljoen E, Welker C, Claeys M, van Steen E, Fletcher JCQ (2006) Pure Appl Chem 78:1759–1769

    Article  CAS  Google Scholar 

  25. Mabaso EI (2005) PhD thesis, University of Cape Town

  26. Schulz H, Nehren S (1986) Erdöl Kohle Erdgas Petrochem 39:93–94

    CAS  Google Scholar 

  27. Morsy SMI, Shaban SA, Ibrahim AM, Selim MM (2009) J Alloy Compd 486:83–87

    Article  CAS  Google Scholar 

  28. Darezereshki E (2011) Mater Lett 65:642–645

    Article  CAS  Google Scholar 

  29. Busca G (2009) In: Jackson SD, Hargreaves JSJ (eds) Metal oxide catalysis, 1st edn. Wiley-VSH Verlag GmbH & Co, Weinheim

    Google Scholar 

  30. Lin H, Long J, Gu Q, Zhang W, Ruan R, Li Z, Wang X (2012) Phys Chem Chem Phys 14:9468–9474

    Article  CAS  Google Scholar 

  31. Roslov I, Boitsova T, Bartak D (2010) J Nanopart Res 12:1479–1488

    Article  CAS  Google Scholar 

  32. Araña J, Doña-Rodríguez JM, Garriga i Cabo C, González-Diaz O, Herrera-Melián JA, Pérez-Peña J (2004) Appl Catal B Environ 53:221–232

    Article  Google Scholar 

  33. Parvanova V (2006) J Therm Anal Calorim 86:443–447

    Article  CAS  Google Scholar 

  34. Wei JH, Leng CJ, Zhang XZ, Li WH, Liu ZY, Shi J (2009) J Phys: Conf Ser 149:012083

    Google Scholar 

  35. Perrin FX, Nguyen V, Vernet JL (2003) J Sol Gel Sci Technol 28:205–215

    Article  CAS  Google Scholar 

  36. Glisenti A (2000) J Mol Catal A Chem 153:169–190

    Article  CAS  Google Scholar 

  37. Chen L, He B-Y, He S, Wang T-J, Jin Y (2012) Powder Technol 227:3–8

    Article  CAS  Google Scholar 

  38. Chonco ZH, Ferreira A, Lodya L, Claeys M, van Steen E (2013) J Catal 307:283–294

    Article  CAS  Google Scholar 

  39. Yang S, He H, Wu D, Chen D, Liang X, Qin Z, Fan M, Zhu J, Yuan P (2009) Appl Catal B Environ 89:527–535

    Article  CAS  Google Scholar 

  40. Li S, Ding W, Meitzner GD, Iglesia E (2002) J Phys Chem B 106:85–91

    Article  CAS  Google Scholar 

  41. de Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, Weckhuysen BM (2010) J Am Chem Soc 132:1498–14941

    Article  Google Scholar 

  42. Claeys M, van Steen E (2004) Stud Surf Sci Catal 152:601–680

    Article  CAS  Google Scholar 

  43. Estrella M, Barrio L, Zhou G, Wang X, Wang Q, Wen W, Hanson JC, Frenkel AL, Rodriguez JA (2009) J Phys Chem C 113:14411–14417

    Article  CAS  Google Scholar 

  44. Rao KRPM, Huggins FE, Mahajan V, Huffman GP, Rao VUS, Bhat BL, Bukur DB, Davis BH, O’Brien RJ (1995) Top Catal 2:71–78

    Article  CAS  Google Scholar 

  45. Schulz H, Gorre H, Erich E, van Steen E (1990) Catal Lett 7:157–167

    Article  CAS  Google Scholar 

  46. Schulz H, van Steen E, Claeys M (1994) Stud Surf Sci Catal 81:455–460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric van Steen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mogorosi, R.P., Claeys, M. & van Steen, E. Enhanced Activity via Surface Modification of Fe-Based Fischer–Tropsch Catalyst Precursor with Titanium Butoxide. Top Catal 57, 572–581 (2014). https://doi.org/10.1007/s11244-013-0213-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0213-0

Keywords

Navigation