Skip to main content
Log in

Structures of Alcohol Dehydrogenases from Ralstonia and Sphingobium spp. Reveal the Molecular Basis for Their Recognition of ‘Bulky–Bulky’ Ketones

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Alcohol dehydrogenases (ADHs) are applied in industrial synthetic chemistry for the production of optically active secondary alcohols. However, the substrate spectrum of many ADHs is narrow, and few, for example, are suitable for the reduction of prochiral ketones in which the carbonyl group is bounded by two bulky and/or hydrophobic groups; so-called ‘bulky–bulky’ ketones. Recently two ADHs, RasADH from Ralstonia sp. DSM 6428, and SyADH from Sphingobium yanoikuyae DSM 6900, have been described, which are distinguished by their ability to accept bulky–bulky ketones as substrates. In order to examine the molecular basis of the recognition of these substrates the structures of the native and NADPH complex of RasADH, and the NADPH complex of SyADH have been determined and refined to resolutions of 1.5, 2.9 and 2.5 Å, respectively. The structures reveal hydrophobic active site tunnels near the surface of the enzymes that are well-suited to the recognition of large hydrophobic substrates, as determined by modelling of the bulky–bulky substrate n-pentyl phenyl ketone. The structures also reveal the bases for NADPH specificity and (S)-stereoselectivity in each of the biocatalysts for n-pentyl phenyl ketone and related substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atkin KE, Reiss R, Turner NJ, Brzozowski AM, Grogan G (2008) Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of variants of monoamine oxidase from Aspergillus niger. Acta Crystallogr Sect F 64:182–185

    Article  CAS  Google Scholar 

  2. Bradshaw CW, Fu H, Shen GJ, Wong CH (1992) A Pseudomonas sp. alcohol dehydrogenase with broad substrate specificity and unusual stereospecificity for organic synthesis. J Org Chem 57:1526–1532

    Article  CAS  Google Scholar 

  3. Cuetos A, Rioz-Martínez A, Bisogno FR, Grischek B, Lavandera I, de Gonzalo G, Kroutil W, Gotor V (2012) Access to enantiopure α-alkyl-β-hydroxy esters through dynamic kinetic resolutions employing purified/overexpressed alcohol dehydrogenases. Adv Synth Catal 354:1743–1749

    Article  CAS  Google Scholar 

  4. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr Sect D 60:2126–2132

    Article  Google Scholar 

  5. Evans P (2006) Scaling and assessment of data quality. Acta Crystallogr Sect D 62:72–82

    Article  Google Scholar 

  6. Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jörnvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684

    Article  CAS  Google Scholar 

  7. Groman EV, Schultz RM, Engel LL, Orr JC (1976) Horse liver alcohol dehydrogenase and Pseudomonas testosteroni 3(17)β-hydroxysteroid dehydrogenase transfer epimeric hydrogens from NADH to 17β-hydroxy-5α-androstan-3-one. An exception to one of the Alworth–Bentley rules. Eur J Biochem 63:427–429

    Article  CAS  Google Scholar 

  8. Hollman F, Arends IWCE, Holtmann D (2011) Enzymatic reductions for the chemist. Green Chem 13:2285–2313

    Article  Google Scholar 

  9. Höllrigl V, Hollmann F, Kleeb A, Buehler K, Schmid A (2008) TADH, the thermostable alcohol dehydrogenase from Thermus sp. ATN1: a versatile new biocatalyst for organic synthesis. Appl Microbiol Biotechnol 81:263–273

    Article  Google Scholar 

  10. Holm L, Sander C (1996) Mapping the protein Universe. Science 273:560–595

    Article  Google Scholar 

  11. Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de Maria PD (2011) Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chem Commun 47:12230–12232

    Article  CAS  Google Scholar 

  12. Kabsch W (2010) XDS. Acta Crystallogr Sect D 66:125–132

    Article  CAS  Google Scholar 

  13. Karabec M, Lyskowski A, Tauber KC, Steinkellner G, Kroutil W, Grogan G, Gruber K (2010) Structural insights into substrate specificity and solvent tolerance in alcohol dehydrogenase ADH-‘A’ from Rhodococcus ruber DSM 44541. Chem Commun 46:6314–6316

    Article  CAS  Google Scholar 

  14. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  CAS  Google Scholar 

  15. Kulig J, Simon RC, Rose CA, Husain SM, Hackh M, Ludeke S, Zeitler K, Kroutil W, Pohl M, Rother D (2012) Stereoselective synthesis of bulky 1,2-diols with alcohol dehydrogenases. Catal Sci Technol 2:1580–1589

    Article  CAS  Google Scholar 

  16. Kulig J, Frese A, Kroutil W, Pohl M, Rother D (2013) Biochemical characterization of an alcohol dehydrogenase from Ralstonia sp. Biotechnol Bioeng 110:1838–1848

    Article  CAS  Google Scholar 

  17. Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  18. Lavandera I, Kern A, Ferreira-Silva B, Glieder A, de Wildeman S, Kroutil W (2008) Stereoselective bioreduction of bulky–bulky ketones by a novel ADH from Ralstonia sp. J Org Chem 73:6003–6005

    Article  CAS  Google Scholar 

  19. Lavandera I, Oberdorfer G, Gross J, de Wildeman S, Kroutil W (2008) Stereocomplementary asymmetric reduction of bulky–bulky ketones by biocatalytic hydrogen transfer. Eur J Org Chem 2008:2539–2543

    Article  Google Scholar 

  20. Lavandera I, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W (2008) One-way biohydrogen transfer for oxidation of sec-alcohols. Org Lett 10:2155–2158

    Article  CAS  Google Scholar 

  21. Long F, Vagin AA, Young P, Murshudov GN (2008) BALBES: a molecular replacement pipeline. Acta Crystallogr Sect D 64:125–132

    Article  CAS  Google Scholar 

  22. Machielsen R, Uria AR, Kengen SWM, van der Oost J (2006) Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol 72:233–238

    Article  CAS  Google Scholar 

  23. MacKenzie AK, Kershaw NJ, Hernandez H, Robinson CV, Schofield CJ, Andersson I (2007) Clavulanic acid dehydrogenase: structural and biochemical analysis of the final step in the biosynthesis of the β-lactamase inhibitor clavulanic acid. Biochemistry 46:1523–1533

    Article  CAS  Google Scholar 

  24. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr Sect D 53:240–255

    Article  CAS  Google Scholar 

  25. Musa MM, Phillips RS (2011) Recent advances in alcohol dehydrogenase-catalysed asymmetric production of hydrophobic alcohols. Catal Sci Technol 1:1311–1323

    Article  CAS  Google Scholar 

  26. Musa MM, Ziegelmann-Fjeld KI, Vieille C, Zeikus JG, Phillips RS (2010) In: Whittall J, Sutton P (eds) Practical methods for biocatalysis and biotransformations. Wiley, Chichester, pp 284–287

    Google Scholar 

  27. Pennacchio A, Giordano A, Esposito L, Langella E, Rossi M, Raia CA (2010) Insight into the stereospecificity of short-chain Thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity. Protein Pept Lett 17:437–443

    Article  CAS  Google Scholar 

  28. Pennacchio A, Giordano A, Pucci B, Rossi M, Raia CA (2010) Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius. Extremophiles 14:193–204

    Article  CAS  Google Scholar 

  29. Prelog V (1964) Specification of the stereospecificity of some oxido-reductases by diamond lattice sections. Pure Appl Chem 9:119–130

    Article  CAS  Google Scholar 

  30. Ramaswamy S, Scholze M, Plapp BV (1997) Binding of formamides to liver alcohol dehydrogenases. Biochemistry 36:3522–3527

    Article  CAS  Google Scholar 

  31. Schlieben NH, Niefind K, Müller J, Riebel B, Hummel W, Schomburg D (2005) Atomic resolution structures of R-specific alcohol dehydrogenase from Lactobacillus brevis provide the structural bases of its substrate and cosubstrate specificity. J Mol Biol 349:801–813

    Article  CAS  Google Scholar 

  32. Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr Sect D 60:1355–1363

    Article  Google Scholar 

  33. Sogabe S, Yoshizumi A, Fukami TA, Shiratori Y, Shimizu S, Takagi H, Nakamori S, Wada M (2003) The crystal structure and stereospecificity of levodione reductase from Corynebacterium aquaticum M-13. J Biol Chem 278:19387–19395

    Article  CAS  Google Scholar 

  34. Supangat S, Seo KH, Choi YK, Park YS, Son D, Han C-D, Lee KH (2006) Structure of Chlorobium tepidum sepiapterin reductase complex reveals the novel substrate binding mode for stereospecific production of L-threo-tetrahydrobiopterin. J Biol Chem 281:2249–2256

    Article  CAS  Google Scholar 

  35. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comp Chem 31:455–461

    CAS  Google Scholar 

  36. Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  37. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. J Appl Cryst 3:186–190

    Article  Google Scholar 

  38. You K-S (1984) Stereospecificity for nicotinamide nucleotides in enzymic and chemical hydride transfer reactions. Crit Rev Biochem 17:313–451

    Article  Google Scholar 

  39. Zelinski T, Kula M-R (1994) A kinetic study and application of a novel carbonyl reductase isolated from Rhodococcus erythropolis. Bioorg Med Chem 2:421–428

    Article  CAS  Google Scholar 

  40. Zhang R, Zhu G, Zhang W, Cao S, Ou X, Li X, Bartlam M, Xu Y, Zhang XC, Rao Z (2008) Crystal structure of a carbonyl reductase from Candida parapsilosis with anti-Prelog stereospecificity. Protein Sci 17:412–1423

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Marie Curie Network for Initial Training fellowships to K.K., J.K. and A.F. in the project BIOTRAINS (FP7-PEOPLE-ITN-2008-238531). We would also like to thank Prof. Wolfgang Kroutil of the University of Graz for genes encoding both RasADH and SyADH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon Grogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, H., Kędziora, K., Kulig, J. et al. Structures of Alcohol Dehydrogenases from Ralstonia and Sphingobium spp. Reveal the Molecular Basis for Their Recognition of ‘Bulky–Bulky’ Ketones. Top Catal 57, 356–365 (2014). https://doi.org/10.1007/s11244-013-0191-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0191-2

Keywords

Navigation