Skip to main content
Log in

In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Elucidation of complex heterogeneous catalytic mechanisms at the molecular level is a challenging task due to the complex electronic structure and the topology of catalyst surfaces. Heterogeneous catalyst surfaces are often quite dynamic and readily undergo significant alterations under working conditions. Thus, monitoring the surface chemistry of heterogeneous catalysts under industrially relevant conditions such as elevated temperatures and pressures requires dedicated in situ spectroscopy methods. Due to their photons-in, photons-out nature, vibrational spectroscopic techniques offer a very powerful and a versatile experimental tool box, allowing real-time investigation of working catalyst surfaces at elevated pressures. Infrared reflection absorption spectroscopy (IRAS or IRRAS), polarization modulation-IRAS and sum frequency generation techniques reveal valuable surface chemical information at the molecular level, particularly when they are applied to atomically well-defined planar model catalyst surfaces such as single crystals or ultrathin films. In this review article, recent state of the art applications of in situ surface vibrational spectroscopy will be presented with a particular focus on elevated pressure adsorption of probe molecules (e.g. CO, NO, O2, H2, CH3OH) on monometallic and bimetallic transition metal surfaces (e.g. Pt, Pd, Rh, Ru, Au, Co, PdZn, AuPd, CuPt, etc.). Furthermore, case studies involving elevated pressure carbon monoxide oxidation, CO hydrogenation, Fischer–Tropsch, methanol decomposition/partial oxidation and methanol steam reforming reactions on single crystal platinum group metal surfaces will be provided. These examples will be exploited in order to demonstrate the capabilities, opportunities and the existing challenges associated with the in situ vibrational spectroscopic analysis of heterogeneous catalytic reactions on model catalyst surfaces at elevated pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Niemantsverdriet JW (2007) Spectroscopy in catalysis. VCH Verlagsgesellschaft mbH, Weinheim

    Book  Google Scholar 

  2. Ruppender HJ, Grunze M, Kong CW, Wilmers M (1990) Surf Interface Anal 15:245–253

    Article  CAS  Google Scholar 

  3. Ogletree DF, Bluhm H, Lebedev G, Fadley CS, Hussain Z, Salmeron M (2002) Rev Sci Instrum 73:3872–3877

    Article  CAS  Google Scholar 

  4. Pantforder J, Pollmann S, Zhu JF, Borgmann D, Denecke R, Steinruck HP (2005) Rev Sci Instrum 76:014102/1-014102/9

  5. Laegsgaard E, Osterlund L, Thostrup P, Rasmussen PB, Stensgaard I, Besenbacher F (2001) Rev Sci Instrum 72:3537–3542

    Article  CAS  Google Scholar 

  6. Jensen JA, Rider KB, Chen Y, Salmeron M, Somorjai GA (1999) J Vac Sci Technol B 17:1080–1084

    Article  CAS  Google Scholar 

  7. McIntyre BJ, Salmeron M, Somorjai GA (1993) Rev Sci Instrum 64:687–691

    Article  CAS  Google Scholar 

  8. Rasmussen PB, Hendriksen BLM, Zeijlemaker H, Ficke HG, Frenken JWM (1998) Rev Sci Instrum 69:3879–3884

    Article  CAS  Google Scholar 

  9. Gao F, Goodman DW (2012) Annu Rev Phys Chem 63:265–286

    Article  CAS  Google Scholar 

  10. Hoffmann FM (1983) Surf Sci Rep 3:109–192

    Article  Google Scholar 

  11. Chabal YJ (1988) Surf Sci Rep 8:211–357

    Article  CAS  Google Scholar 

  12. Kunimatsu K, Golden WG, Seki H, Philpott MR (1985) Langmuir 1:245–250

    Article  CAS  Google Scholar 

  13. Green MJ, Barner BJ, Corn RM (1991) Rev Sci Instrum 62:1426–1430

    Article  CAS  Google Scholar 

  14. Barner BJ, Green MJ, Saez EI, Corn RM (1991) Anal Chem 63:55–60

    Article  CAS  Google Scholar 

  15. Blaudez D, Buffeteau T, Cornut JC, Desbat B, Escafre N, Pezolet M, Turlet JM (1993) Appl Spectrosc 47:869–874

    Article  CAS  Google Scholar 

  16. Faguy PW, Richmond WN, Jackson RS, Weibel SC, Ball G, Payer JH (1998) Appl Spectrosc 52:557–564

    Article  CAS  Google Scholar 

  17. Ozensoy E (2004) Ph.D. Thesis. Texas A&M University

  18. Ozensoy E, Hess C, Goodman DW (2004) Top Catal 28:13–23

    Article  CAS  Google Scholar 

  19. Ozensoy E, Meier DC, Goodman DW (2002) J Phys Chem B 106:9367–9371

    Article  CAS  Google Scholar 

  20. Ozensoy E, Min BK, Goodman DW (2004) J Phys Chem B 108:4351–4357

    Article  CAS  Google Scholar 

  21. Ozensoy E, Goodman DW (2004) Phys Chem Chem Phys 6:3765–3778 and references therein

    Google Scholar 

  22. Ozensoy E, Hess C, Loffreda D, Sautet S, Goodman DW (2005) J Phys Chem B 109:5414–5417

    Article  CAS  Google Scholar 

  23. Hess C, Ozensoy E, Yi CW, Goodman DW (2006) J Am Chem Soc 128:2988–2994

    Article  CAS  Google Scholar 

  24. Ozensoy E, Hess C, Goodman DW (2002) J Am Chem Soc 124:8524–8525 and references therein

    Google Scholar 

  25. Hess C, Ozensoy E, Goodman DW (2003) J Phys Chem B 107:2759–2764

    Article  CAS  Google Scholar 

  26. Hess C, Ozensoy E, Goodman DW (2004) J Phys Chem B 108:14181–14182

    Article  CAS  Google Scholar 

  27. Shen YR (1994) Surf Sci 299–300:551–562

    Article  Google Scholar 

  28. Shen YR (1989) Nature 337:519–525

    Article  CAS  Google Scholar 

  29. Rupprechter G (2007) Adv Catal 51:133–263

    CAS  Google Scholar 

  30. Vidal F, Tadjeddine A (2005) Rep Prog Phys 68:1095–1127

    Article  CAS  Google Scholar 

  31. Lambert AG, Davies PB, Neivandt DJ (2005) Appl Spectrosc Rev 40:103–145

    Article  CAS  Google Scholar 

  32. Moad AJ, Simpson GJ (2004) J Phys Chem B 108:3548–3562

    Article  CAS  Google Scholar 

  33. Cremer PS, Somorjai GA (1995) J Chem Soc Faraday Trans 91:3671–3677

    Article  CAS  Google Scholar 

  34. Cremer PS, Su XC, Shen YR, Somorjai GA (1996) J Am Chem Soc 118:2942–2949

    Article  CAS  Google Scholar 

  35. Rupprechter G (2007) MRS Bull 32:1031–1037

    Article  CAS  Google Scholar 

  36. Kuhn WK, Szanyi J, Goodman DW (1992) Surf Sci 274:L611–L618

    Article  CAS  Google Scholar 

  37. Stacchiola D, Thompson AW, Kaltchev M, Tysoe WT (2002) J Vac Sci Technol B 20:2101–2105

    Article  CAS  Google Scholar 

  38. Rose MK, Mitsui T, Dunphy J, Borg A, Ogletree DF, Salmeron M, Sautet P (2002) Surf Sci 512:48–60

    Article  CAS  Google Scholar 

  39. Unterhalt H, Rupprechter G, Freund HJ (2002) J Phys Chem B 106:356–367

    Article  CAS  Google Scholar 

  40. Rupprechter G, Unterhalt H, Morkel M, Galletto P, Hu LJ, Freund HJ (2002) Surf Sci 502:109–122

    Article  Google Scholar 

  41. Kaichev VV, Prosvirin IP, Bukhtiyarov VI, Unterhalt H, Rupprechter G, Freund HJ (2003) J Phys Chem B 107:3522–3527

    Article  CAS  Google Scholar 

  42. Rupprechter G, Kaichev VV, Unterhalt H, Morkel A, Bukhtiyarov VI (2004) Appl Surf Sci 235:26–31

    Article  CAS  Google Scholar 

  43. Szanyi J, Kuhn WK, Goodman DW (1993) J Vac Sci Technol A 11:1969–1974

    Article  CAS  Google Scholar 

  44. Goodman DW (1994) Surf Sci 299:837–848

    Article  Google Scholar 

  45. Baumer M, Freund HJ (1999) Prog Surf Sci 61:127–198

    Article  CAS  Google Scholar 

  46. Bowker M, Holroyd R, Perkins N, Bhantoo J, Counsell J, Carley A, Morgan C (2007) Surf Sci 601:3651–3660

    Article  CAS  Google Scholar 

  47. Föttinger K, Schlögl R, Rupprechter G (2008) Chem Commun 0:320–322

    Article  Google Scholar 

  48. Rupprechter G (2001) Phys Chem Chem Phys 3:4621–4632

    Article  CAS  Google Scholar 

  49. Yudanov IV, Sahnoun R, Neyman KM, Rosch N, Hoffmann J, Schauermann S, Johanek V, Unterhalt H, Rupprechter G, Libuda J, Freund HJ (2003) J Phys Chem B 107:255–264

    Article  CAS  Google Scholar 

  50. Dellwig T, Rupprechter G, Unterhalt H, Freund H-J (2000) Phys Rev Lett 85:776–779

    Article  CAS  Google Scholar 

  51. Ertl G, Neumann M, Streit KM (1977) Surf Sci 64:393–410

    Article  CAS  Google Scholar 

  52. Pedersen MO, Bocquet ML, Sautet P, Lægsgaard E, Stensgaard I, Besenbacher F (1999) Chem Phys Lett 299:403–409

    Article  CAS  Google Scholar 

  53. Carrasco E, Aumer A, Brown MA, Dowler R, Palacio I, Song S, Sterrer M (2010) Surf Sci 604:1320–1325

    Article  CAS  Google Scholar 

  54. Su X, Cremer PS, Shen YR, Somorjai GA (1996) Phys Rev Lett 77:3858–3860

    Article  CAS  Google Scholar 

  55. Avery NR (1981) J Chem Phys 74:4202–4203

    Article  CAS  Google Scholar 

  56. Andersson KJ, Chorkendorff I (2010) Surf Sci 604:1733–1736

    Article  CAS  Google Scholar 

  57. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301–309

    Article  CAS  Google Scholar 

  58. Haruta M (2002) Cattech 6:102–115

    Article  CAS  Google Scholar 

  59. Valden M, Lai X, Goodman DW (1998) Science 281:1647–1650

    Article  CAS  Google Scholar 

  60. Gong J (2012) Chem Rev 112: 2987–3054 and references therein

  61. Piccolo L, Loffreda D, Cadete Santos Aires FJ, Deranlot C, Jugnet Y, Sautet P, Bertolini JC (2004) Surf Sci 566–568:995–1000

    Article  Google Scholar 

  62. Nakamura I, Takahashi A, Fujitani T (2009) Catal Lett 129:400–403

    Article  CAS  Google Scholar 

  63. Artiglia L, Diemant T, Hartmann H, Bansmann J, Behm RJ, Gavioli G, Cavaliere E, Granozzi G (2010) Phys Chem Chem Phys 12:6864–6874

    Article  CAS  Google Scholar 

  64. Gao F, Wood TE, Goodman DW (2010) Catal Lett 134:9–12

    Article  CAS  Google Scholar 

  65. Paszti Z, Hakkel O, Keszthelyi T, Berko A, Balazs N, Bako I, Guczi L (2010) Langmuir 26:16312–16324

    Article  CAS  Google Scholar 

  66. Diemant T, Hartmann H, Bansmann J, Behm RJ (2007) J Catal 252:171–177

    Article  CAS  Google Scholar 

  67. Gao F, Wang Y, Goodman DW (2009) J Am Chem Soc 131:5734–5735

    Article  CAS  Google Scholar 

  68. Gao F, Wang Y, Goodman DW (2009) J Phys Chem C 113:14993–15000

    Article  CAS  Google Scholar 

  69. Gao F, Wang Y, Goodman DW (2009) J Catal 268:115–121 and references therein

    Google Scholar 

  70. Gao F, Wang Y, Goodman DW (2010) J Phys Chem C 114:4036–4043

    Article  CAS  Google Scholar 

  71. Jugnet Y, Aires FJCS, Deranlot C, Piccolo L, Bertolini JC (2002) Surf Sci 521:L639–L644

    Article  CAS  Google Scholar 

  72. Chen PJ, Goodman DW (1993) Surf Sci 297:L93–L99

    Article  CAS  Google Scholar 

  73. Wallace WT, Cai Y, Chen MS, Goodman DW (2006) J Phys Chem B110:6245–6249

    Article  Google Scholar 

  74. Jones JE, Trenary M (2008) J Phys Chem C 112:20443–20450

    Article  CAS  Google Scholar 

  75. Németh R, Kiss J, Solymosi F (2007) J Phys Chem C 111:1424–1427

    Article  Google Scholar 

  76. Solymosi F, Bansagi T, Zakar TS (2004) J Phys Chem B 108:14178–14180

    Article  CAS  Google Scholar 

  77. Oosterbeek H (2007) Phys Chem Chem Phys 9:3570–3576

    Article  CAS  Google Scholar 

  78. Beitel GA, de Groot CPM, Oosterbeek H, Wilson JH (1997) J Phys Chem B 101:4035–4043

    Article  CAS  Google Scholar 

  79. Beitel GA, Laskov A, Oosterbeek H, Kuipers EW (1996) J Phys Chem 100:12494–12502

    Article  CAS  Google Scholar 

  80. Morkel M, Rupprechter G, Hans-Joachim Freund HJ (2005) Surf Sci 588:L209–L219

    Article  CAS  Google Scholar 

  81. Morkel M, Rupprechter G, Hans-Joachim Freund HJ (2003) J Chem Phys 119:10853–10866

    Article  CAS  Google Scholar 

  82. Gao F, Cai Y, Gath K, Wang Y, Chen MS, Guo QL, Goodman DW (2009) J Phys Chem C 113:182–192

    Article  CAS  Google Scholar 

  83. Gao F, Goodman DW (2012) Phys Chem Chem Phys 14:6688–6697 and references therein

    Google Scholar 

  84. Gao F, McClure S, Chen M, Goodman DW (2010) J Phys Chem C114:22369–22371

    Google Scholar 

  85. Gao F, Goodman DW (2010) Langmuir 26:16540–16551

    Article  CAS  Google Scholar 

  86. McClure SM, Lundwall M, Yang F, Zhou Z, Goodman DW (2009) J Phys Chem C113:9688–9697

    Google Scholar 

  87. Gao F, Wang Y, Cai Y, Goodman DW (2009) J Phys Chem C 113:174–181

    Article  CAS  Google Scholar 

  88. McClure SM, Goodman DW (2009) Chem Phys Lett 469:1–13 and references therein

    Google Scholar 

  89. Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) Surf Sci 603:65–70

    Article  CAS  Google Scholar 

  90. Gao F, Wang Y, Cai Y, Goodman DW (2009) Surf Sci 603:1126–1134

    Article  CAS  Google Scholar 

  91. Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) J Phys Chem C114:4580–4583

    Google Scholar 

  92. Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) J Phys Chem C 114:22372–22373

    Article  CAS  Google Scholar 

  93. Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerstrom R, Lundgren E, Frenken JWM (2010) J Phys Chem C 114:6875–6876

    Article  Google Scholar 

  94. Dupont C, Loffreda D, Delbecq F, Aires FJCS, Ehret E, Jugnet Y (2008) J Phys Chem C 112:10862–19867

    Article  CAS  Google Scholar 

  95. Dupont C, Delbecq F, Loffreda D, Jugnet Y (2011) J Catal 278:239–245

    Article  CAS  Google Scholar 

  96. Sales BC, Turner JE, Maple MB (1982) Surf Sci 114:381–394

    Article  CAS  Google Scholar 

  97. Ladas S, Imbihl R, Ertl G (1989) Surf Sci 219:88–106

    Article  CAS  Google Scholar 

  98. Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Angew Chem Int Ed 50:10064–10094

    Article  CAS  Google Scholar 

  99. Zorn K, Giorgio S, Halwax E, Henry CR, Gronbeck H, Rupprechter G (2011) J Phys Chem C 115:1103–1111

    Article  CAS  Google Scholar 

  100. Gao F, Wang Y, Goodman DW (2010) J Phys Chem C 114:6874

    Article  CAS  Google Scholar 

  101. Baumer M, Libuda J, Neyman KM, Rosch N, Rupprechter G, Freund HJ (2007) Phys Chem Chem Phys 9:3541–3558

    Article  Google Scholar 

  102. Levis RJ, Jiang ZC, Winograd N (1989) J Am Chem Soc 111:4605–4612

    Article  CAS  Google Scholar 

  103. Guo X, Hanley L, Yates JT (1989) J Am Chem Soc 111:3155–3157

    Article  CAS  Google Scholar 

  104. Rupprechter G, Weilach C (2007) Nano Today 2:20–29

    Article  Google Scholar 

  105. Borasio M, Fuente OR, Rupprechter G, Freund HJ (2005) J Phys Chem B 109:17791–17794

    Article  CAS  Google Scholar 

  106. Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Havecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlogl R, Memmel N, Zemlyanov D, Rupprechter G, Klotzer B (2010) Angew Chem Int Ed 49:3224–3227 and references therein

    Google Scholar 

Download references

Acknowledgments

E.O. acknowledges support from Turkish Academy of Sciences (TUBA) through the “Outstanding Young Investigator” Grant. E.V. acknowledges RFBR (Russia) #12-03-91373-CT_a for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Ozensoy.

Additional information

This article is dedicated to late D. Wayne Goodman, my Ph.D. advisor, an outstandingly brilliant scientist, a truly inspirational character and a great scientific role model (E.O.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozensoy, E., Vovk, E.I. In-Situ Vibrational Spectroscopic Studies on Model Catalyst Surfaces at Elevated Pressures. Top Catal 56, 1569–1592 (2013). https://doi.org/10.1007/s11244-013-0151-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0151-x

Keywords

Navigation