Skip to main content
Log in

Kinetics and Active Surfaces for CO Oxidation on Pt-Group Metals Under Oxygen Rich Conditions

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This mini review summaries recent works on identifying the active surfaces for CO oxidation on Pd, Pt, and Rh under oxygen rich conditions. A significantly high reaction rate for CO oxidation under oxygen rich conditions has been observed. Results using in situ characterization methods of ambient scanning tunneling microscope, surface X-ray diffraction, ambient pressure X-ray photoemission spectroscopy, X-ray absorption spectroscopy, and infrared reflection adsorption spectroscopy (IRAS), were included. Most X-ray related methods reveal that the achievements of the high reaction rates for CO oxidation on Pd, Pt, and Rh under oxygen rich conditions are accompanied with the appearance of oxides on the surface, leading to that the oxide phase is considered to be the active surface. In contrast, recent in situ IRAS results conclude that a chemisorbed oxygen covered metallic surface is the active surface. Kinetic data support that the reaction on the metallic surfaces can reach the high rate, e.g. a mass-transfer limit turnover frequency, without the necessity of the presence of oxide. Therefore, we point out that the appearance of oxides on Pt-group metals during CO oxidation is possibly due to the transfer-limit of CO gas, resulting in exposing the catalyst surface to an ambient atmosphere much richer in oxygen and thus building-up the oxide. Moreover, photons in X-ray related experiments may aid to overcome the formation barrier of oxide on a chemisorbed oxygen covered metallic surface. The formation of oxide is also affected by the mass-transfer properties of the in situ reaction cells. If the amount of incoming CO molecules under the mass-transfer limit of CO is high enough, the build-up of oxide may be precluded being consumed by reacting with CO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Langmuir I (1922) The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans Faraday Soc 17:621–654

    Article  Google Scholar 

  2. Berlowitz PJ, Peden CHF, Goodman DW (1988) Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir. J Phys Chem 92(18):5213–5221

    Article  CAS  Google Scholar 

  3. Rodriguez JA, Goodman DW (1991) High-pressure catalytic reactions over single-crystal metal-surfaces. Surf Sci Rep 14(1–2):1–107

    Article  CAS  Google Scholar 

  4. Somorjai GA, McCrea KR (2000) Sum frequency generation: surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces. Adv Catal 45:385–483

    CAS  Google Scholar 

  5. Cant NW, Angove DE (1986) The origin of apparent deactivation during the oxidation of carbon monoxide over silica-supported platinum at moderate temperatures. J Catal 97(1):36–42

    Article  CAS  Google Scholar 

  6. Kummer JT (1986) Use of noble-metals in automobile exhaust catalysts. J Phys Chem 90(20):4747–4752

    Article  CAS  Google Scholar 

  7. Jones Z, Bennett RA, Bowker M (1999) CO oxidation on Pd(110): a high-resolution XPS and molecular beam study. Surf Sci 439(1–3):235–248

    Article  CAS  Google Scholar 

  8. Liu J, Xu M, Zaera F (1996) Determination of the rate limiting step in the oxidation of CO on Pt(111) surfaces. Catal Lett 37(1–2):9–13

    Article  CAS  Google Scholar 

  9. Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund HJ (2006) CO oxidation on partially oxidized Pd nanoparticles. J Catal 242(1):58–70

    Article  CAS  Google Scholar 

  10. Penner S, Bera P, Pedersen S, Ngo LT, Harris JJW, Campbell CT (2006) Interactions of O2 with Pd nanoparticles on alpha-Al2O3(0001) at low and high O2 pressures. J Phys Chem 110(48):24577–24584

    Article  CAS  Google Scholar 

  11. Gabasch H, Knop-Gericke A, Schlogl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Klotzer B (2007) Comparison of the reactivity of different Pd–O species in CO oxidation. Phys Chem Chem Phys 9(4):533–540

    Article  CAS  Google Scholar 

  12. Engel T, Ertl G (1979) Elementary steps in the catalytic oxidation of carbon monoxide on platinum metals. Adv Catal 28:1–78

    CAS  Google Scholar 

  13. Campbell CT, Ertl G, Kuipers H, Segner J (1980) A molecular-beam study of the catalytic-oxidation of CO on a Pt(111) surface. J Chem Phys 73(11):5862–5873

    Article  CAS  Google Scholar 

  14. Xu JZ, Yates JT (1993) Catalytic-oxidation of CO on Pt(335)—a study of the active-site. J Chem Phys 99(1):725–732

    Article  CAS  Google Scholar 

  15. Chen MS, Cai Y, Yan Z, Gath KK, Axnanda S, Goodman DW (2007) Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf Sci 601(23):5326–5331

    Article  CAS  Google Scholar 

  16. Su XC, Cremer PS, Shen YR, Somorjai GA (1997) High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG). J Am Chem Soc 119(17):3994–4000

    Article  CAS  Google Scholar 

  17. Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95(25):255505

    Article  CAS  Google Scholar 

  18. Chen MS, Wang XV, Zhang LH, Tang ZY, Wan HL (2010) Active surfaces for CO oxidation on palladium in the hyperactive state. Langmuir 26(23):18113–18118

    Article  CAS  Google Scholar 

  19. Zhdanov VP, Kasemo B (1997) Kinetics of rapid heterogeneous reactions on the nanometer scale. J Catal 170(2):377–389

    Article  CAS  Google Scholar 

  20. Anderson JA (1991) CO oxidation on Rh/Al2O3 catalysts. J Chem Soc Faraday Trans 87(24):3907–3911

    Article  CAS  Google Scholar 

  21. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Au catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 115(2):301–309

    Article  CAS  Google Scholar 

  22. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  CAS  Google Scholar 

  23. Chen MS, Goodman DW (2004) The structure of catalytically active Au on titania. Science 306(5694):252–255

    Article  CAS  Google Scholar 

  24. Campbell CT (2004) The active site in nanoparticle Au catalysis. Science 306(5694):234–235

    Article  CAS  Google Scholar 

  25. Chen MS, Goodman DW (2006) Catalytically active gold: from nano-particles to ultra-thin films. Acc Chem Res 39(10):739–746

    Article  CAS  Google Scholar 

  26. Chen MS, Goodman DW (2006) Active structure of supported Au catalysts. Catal Today 111(1):22–33

    Article  CAS  Google Scholar 

  27. Gao F, Goodman DW (2012) Reaction kinetics and polarization modulation infrared reflection absorption spectroscopy investigations of CO oxidation over planar Pt-group model catalysts. Langmuir 26(21):16540–16551

    Article  CAS  Google Scholar 

  28. Gao F, Cai Y, Gath KK, Wang Y, Chen, Guo QL, Goodman DW (2009) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 1. Rhodium. J Phys Chem C 113(1):182–192

    Article  CAS  Google Scholar 

  29. Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum. J Phys Chem C 113(1):174–181

    Article  CAS  Google Scholar 

  30. Gao F, McClure SM, Cai Y, Gath KK, Wang Y, Chen MS, Guo QL, Goodman DW (2009) CO oxidation trends on Pt-group metals from ultrahigh vacuum to near atmospheric pressures: a combined in situ PM-IRAS and reaction kinetics study. Surf Sci 603(1):65–70

    Article  CAS  Google Scholar 

  31. Gao F, Wang Y, Goodman DW (2010) Reply to Comment on “CO oxidation on Pt group metals from ultrahigh vacuum to near atmospheric pressures II. Palladium and platinum”. J Phys Chem C 114(14):6874

    Article  CAS  Google Scholar 

  32. Gao F, McClure S, Chen MS, Goodman DW (2010) Comment on “Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions”. J Phys Chem C 114(50):22369–22371

    Article  CAS  Google Scholar 

  33. Salmeron M, Brewer L, Somorjai GA (1981) The structure and stability of surface platinum oxide and of oxides of other noble-metals. Surf Sci 112(3):207–228

    Article  CAS  Google Scholar 

  34. Bennett RA, Poulston S, Jones IZ, Bowker M (1998) High-temperature scanning tunnelling microscopy studies of oxygen-induced reconstructions of Pd(110). Surf Sci 401(1):72–81

    Article  CAS  Google Scholar 

  35. Carlisle CI, Fujimoto T, Sim WS, King DA (2000) Atomic imaging of the transition between oxygen chemisorption and oxide film growth on Ag(111). Surf Sci 470(1–2):15–31

    Article  CAS  Google Scholar 

  36. Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, Santis MD, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88(24):246103

    Article  CAS  Google Scholar 

  37. Zheng G, Altman EI (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253–270

    Article  CAS  Google Scholar 

  38. Chen MS, Santra AK, Goodman DW (2004) Structure of thin SiO2 films grown on Mo(112). Phys Rev B 69(15):155404

    Article  CAS  Google Scholar 

  39. Gustafson J, Mikkelsen A, Borg M, Andersen JN, Lundgren E, Klein C, Hofer W, Schmid M, Varga P, Kohler L, Kresse G, Kasper N, Stierle A, Dosch H (2005) Structure of a thin oxide film on Rh(100). Phys Rev B 71(11):115442

    Article  CAS  Google Scholar 

  40. Stierle A, Kasper N, Dosch H, Lundgren E, Gustafson J, Mikkelsen A, Andersen JN (2005) A surface X-ray study of the structure and morphology of the oxidized Pd(001) surface. J Chem Phys 122(4):044706

    Article  CAS  Google Scholar 

  41. Zemlyanov D, Aszalos-Kiss B, Kleimenov E, Teschner D, Zafeiratos S, Havecker M, Knop-Gericke A, Schlogl R, Gabasch H, Unterberger W, Hayek K, Koltzer B (2006) In-situ XPS study of Pd(111) oxidation. Part 1: 2D oxide formation in 10−3 mbar O2. Surf Sci 600(5):983–994

    Article  CAS  Google Scholar 

  42. Campbell CT (2006) Transition metal oxides: extra thermodynamic stability as thin films. Phys Rev Lett 96(6):066106

    Article  CAS  Google Scholar 

  43. Chen MS, Goodman DW (2006) The structure of monolayer SiO2 on Mo(112): a 2-D[Si–O–Si] network or isolated [SiO4] units? Surf Sci 600(19):L255–L259

    Article  CAS  Google Scholar 

  44. Chen MS, Goodman DW (2005) An investigation of the TiO x –SiO2/Mo(112) interface. Surf Sci 574(2–3):259–268

    Article  CAS  Google Scholar 

  45. Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89(4):046101

    Article  CAS  Google Scholar 

  46. Chung JY, Aksoy F, Grass ME, Kondoh H, Ross JP, Liu Z, Mun BS (2009) In-situ study of the catalytic oxidation of CO on a Pt(110) surface using ambient pressure X-ray photoelectron spectroscopy. Surf Sci 603(5):L35–L38

    Article  CAS  Google Scholar 

  47. Gustafson J, Westerstroem R, Mikkelsen A, Torrelles X, Balmes O, Bovet N, Andersen JN, Baddeley CJ, Lundgren E (2008) Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B 78(4):045423

    Article  CAS  Google Scholar 

  48. Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions. J Phys Chem C 114(10):4580–4583

    Article  CAS  Google Scholar 

  49. Gustafson J, Westerstrom R, Resta A, Mikkelsen A, Andersen JN, Balmes O, Torrelles X, Schmid M, Varga P, Hammer B, Kresse G, Baddeley CJ, Lundgren E (2009) Structure and catalytic reactivity of Rh oxides. Catal Today 145(3–4):227–235

    Article  CAS  Google Scholar 

  50. van Rijn R, Balmes O, Resta A, Wermeille D, Westerstrom R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures. Phys Chem Chem Phys 13(29):13167–13171

    Article  CAS  Google Scholar 

  51. Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) The role of steps in surface catalysis and reaction oscillations. Nat Mater 2(9):730–734

    CAS  Google Scholar 

  52. Nehasil V, Stará I, Matolín V (1996) Size effect study of carbon monoxide oxidation by Rh surfaces. Surf Sci 352:305–309

    Article  Google Scholar 

  53. Stará I, Nehasil V, Matolín V (1995) The influence of particle-size on CO oxidation on Pd alumina model catalyst. Surf Sci 331(1):173–177

    Article  Google Scholar 

  54. Matolin V, Gillet E (1986) The surface diffusion in CO oxidation on small supported Pd particles: experimental evidence. Surf Sci Lett 166(1):L115–L118

    CAS  Google Scholar 

  55. Christou SY, Efstathiou AM (2007) Effects of Pd particle size on the rates of oxygen back-spillover and CO oxidation under dynamic oxygen storage and release measurements over Pd/CeO2 catalysts. Top Catal 42–43(1–4):351–355

    Article  CAS  Google Scholar 

  56. Wang ZW, Li B, Chen MS, Weng WZ, Wan HL (2010) Size and support effects for CO oxidation on supported Pd catalysts. Sci China Chem 53(9):2047–2056

    Article  CAS  Google Scholar 

  57. Jin MS, Liu HY, Zhang H, Xie ZX, Liu JY, Xia YN (2011) Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res 4(1):83–91

    Article  CAS  Google Scholar 

  58. Chen XN, Chen JY, Zhao Y, Chen MS, Wan HL (2012) Effect of dispersion on catalytic performance of supported Pt catalysts for CO oxidation. Chin J Catal 33(12):1901–1905

    Article  CAS  Google Scholar 

  59. Fu Q, Li WX, Yao YX, Liu HY, Su HY, Ma D, Gu XK, Chen LM, Wang Z, Zhang H, Wang B, Bao XH (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328(5982):1141–1144

    Article  CAS  Google Scholar 

  60. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735

    Article  CAS  Google Scholar 

  61. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691

    Article  CAS  Google Scholar 

  62. Shaikhutdinov S, Freund H (2012) Ultrathin oxide films on metal supports: structure–reactivity relations. J Annu Rev Phys Chem 63:619–633

    Article  CAS  Google Scholar 

  63. Toyoshima R, Yoshida M, Monya Y, Suzuki K, Mun BS, Amemiya K, Mase K, Kondoh H (2012) Active surface oxygen for catalytic CO oxidation on Pd(100) proceeding under near ambient pressure conditions. J Phys Chem Lett 3(21):3182–3187

    Article  CAS  Google Scholar 

  64. Toyoshima R, Yoshida M, Monya Y, Kousa Y, Suzuki K, Abe H, Mun BS, Mase K, Amemiya K, Kondoh H (2012) In-situ ambient pressure XPS study of CO oxidation reaction on Pd(111) surfaces. J Phys Chem C 116(35):18691–18697

    Article  CAS  Google Scholar 

  65. Grass ME, Zhang YW, Butcher DR, Park JY, Li YM, Bluhm H, Bratlie KM, Zhang TF, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47(46):8893–8896

    Article  CAS  Google Scholar 

  66. Gustafson J, Mikkelsen A, Borg M, Lundgren E, Kohler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92(12):126102

    Article  CAS  Google Scholar 

  67. Gustafson J, Westerstrom R, Balmes O, Resta A, van Rijn R, Torrelles X, Herbsehleb CT, Frenken JWM, Lundgren E (2010) Reply to “Comment on ‘Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions’ ”. J Phys Chem C 114(50):22372–22373

    Article  CAS  Google Scholar 

  68. Alayon EMC, Singh J, Nachtegaal M, Harfouche M, van Bokhoven JA (2009) On highly active partially oxidized platinum in carbon monoxide oxidation over supported platinum catalysts. J Catal 263(2):228–238

    Article  CAS  Google Scholar 

  69. Ligthart DAJM, van Santen RA, Hensen EJM (2011) Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew Chem Int Ed 50(23):5306–5310

    Article  CAS  Google Scholar 

  70. Singh J, van Bokhoven JA (2010) Structure of alumina supported platinum catalysts of different particle size during CO oxidation using in situ IR and HERFD XAS. Catal Today 155(3–4):199–205

    Article  CAS  Google Scholar 

  71. Singh J, Nachtegaal M, Alayon EMC, Stotzel J, van Bokhoven JA (2010) Dynamic structure changes of a heterogeneous catalyst within a reactor: oscillations in CO oxidation over a supported platinum catalyst. ChemCatChem 2(6):653–657

    Article  CAS  Google Scholar 

  72. Kliche G (1985) Far-infrared reflection spectra of PdO, PdS, PdSe and PtS. Infrared Phys 25(1–2):381–383

    Article  CAS  Google Scholar 

  73. McBride JR, Hass KC, Weber WH (1991) Resonance-Raman and lattice-dynamics studies of single-crystal PdO. Phys Rev B 44(10):5016–5028

    Article  CAS  Google Scholar 

  74. Frank M, Wolter K, Magg N, Heemeier M, Kuhnemuth R, Baumer M, Freund H (2001) Phonons of clean and metal-modified oxide films: an infrared and HREELS study. Surf Sci 492(3):270–284

    Article  CAS  Google Scholar 

  75. Imbihl R, Demuth JE (1986) Adsorption of oxygen on a Pd(111) surface studied by high resolution electron energy loss spectroscopy (EELS). Surf Sci 173(2–3):395–410

    Article  CAS  Google Scholar 

  76. Stuve EM, Madix RJ (1984) CO oxidation on Pd(100): a study of the coadsorption of oxygen and carbon monoxide. Surf Sci 146(1):155–178

    Article  CAS  Google Scholar 

  77. Hinojosa JA, Kan HH, Weaver JF (2008) Molecular chemisorption of O2 on a PdO(101) thin film on Pd(111). J Phys Chem C 112(22):8324–8331

    Article  CAS  Google Scholar 

  78. Kostelník P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Šikola T, Varga P, Schmid M (2007) The Pd(100)–(5 × 5)R27° surface oxide: a LEED, DFT and STM study. Surf Sci 601(6):1574–1581

    Article  CAS  Google Scholar 

  79. Zheng G, Altman EI (2000) The oxidation of Pd(111). Surf Sci 462(1–3):151–168

    Article  CAS  Google Scholar 

  80. Chen MS et al (unpublished data)

  81. Deshlahra P, Pfeifer K, Bernstein GH, Wolf EE (2011) CO adsorption and oxidation studies on nanofabricated model catalysts using multilayer enhanced IRAS technique. Appl Catal A 391(1–2):22–30

    Article  CAS  Google Scholar 

  82. van Rijn R, Balmes O, Felici R, Gustafson J, Wermeille D, Westerström R, Lundgren E, Frenken JWM (2010) Comment on “CO oxidation on Pt-group metals from ultrahigh vacuum to near atmospheric pressures. 2. Palladium and platinum”. J Phys Chem C 114(14):6875–6876

    Article  CAS  Google Scholar 

  83. Engel T, Ertl G (1978) A molecular beam investigation of the catalytic oxidation of carbon monoxide on palladium(111). J Chem Phys 69(3):1267–1281

    Article  CAS  Google Scholar 

  84. Goodman DW, Peden CHF (1986) Carbon monoxide oxidation over rhodium and ruthenium: a comparative study. J Phys Chem 90(20):4839–4843

    Article  CAS  Google Scholar 

  85. Xu X, Goodman DW (1993) An infrared and kinetic study of carbon monoxide oxidation on model silica-supported palladium catalysts from 10−9 to 15 Torr. J Phys Chem 97(29):7711–7718

    Article  CAS  Google Scholar 

  86. Xu M, Liu J, Zaera F (1996) Kinetic evidence for the dependence of surface reaction rates on the distribution of reactants on the surface. J Chem Phys 104(21):8825–8828

    Article  CAS  Google Scholar 

  87. Zaera F, Liu J, Xu M (1997) Isothermal study of the kinetics of carbon monoxide oxidation on Pt(111): rate dependence on surface coverages. J Chem Phys 106(10):4204–4215

    Article  CAS  Google Scholar 

  88. Zheng G, Altman EI (2002) The reactivity of surface oxygen phases on Pd(100) toward reduction by CO. J Phys Chem B 106(5):1048–1057

    Article  CAS  Google Scholar 

  89. Gerrard AL, Weaver JF (2005) Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111). J Chem Phys 123(22):224703

    Article  CAS  Google Scholar 

  90. Butcher DR, Grass ME, Zeng ZH, Aksoy F, Bluhm H, Li WX, Mun BS, Somorjai GA, Liu Z (2011) In-situ oxidation study of Pt(110) and its interaction with CO. J Am Chem Soc 133(50):20319–20325

    Article  CAS  Google Scholar 

  91. Huang WX, Zhai RS, Bao XH (2000) Investigation of oxygen adsorption on Pd(100) with defects. Appl Surf Sci 158(3–4):287–291

    Article  CAS  Google Scholar 

  92. Shumbera RB, Kan HH, Weaver JF (2007) Oxidation of Pt(100)-hex-R0.7 degrees by gas-phase oxygen atoms. Surf Sci 601(1):235–246

    Article  CAS  Google Scholar 

  93. Stierle A (2009) Oxidation of palladium: from single crystal surfaces towards nanoparticles. Int J Mater Res 100(10):1308–1317

    Article  CAS  Google Scholar 

  94. Westerstroem R, Weststrate CJ, Gustafson J, Mikkelsen A, Schnadt J, Andersen JN, Lundgren E, Seriani N, Mittendorfer F, Kresse G, Stierle A (2009) Lack of surface oxide layers and facile bulk oxide formation on Pd(110). Phys Rev B 80(12):12543

    Google Scholar 

  95. Krasnikov SA, Murphy S, Berdunov N, McCoy AP, Radican K, Shvets IV (2010) Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 21(33):335301

    Article  CAS  Google Scholar 

  96. Becker U, Shirley DA (1996) VUV and soft X-ray photoionization. Plenum, New York

    Book  Google Scholar 

  97. Hanley L, Guo XC, Yates JT (1989) Photolysis of chemisorbed dioxygen on Pd(111)—dependence on photon energy. J Chem Phys 91(11):7220–7227

    Article  CAS  Google Scholar 

  98. White JM (1998) Using photons and electrons to drive surface chemical reactions. J Mol Catal A 131(1–3):71–90

    Article  CAS  Google Scholar 

  99. Sato H (2001) Photodissociation of simple molecules in the gas phase. Chem Rev 101(9):2687–2725

    Article  CAS  Google Scholar 

  100. Ho W (1994) Surface photochemistry. Surf Sci 299(1–3):996–1007

    Article  Google Scholar 

  101. Butler LJ, Neumark DM (1996) Photodissociation dynamics. J Phys Chem 100(31):12801–12816

    Article  CAS  Google Scholar 

  102. Tripa CE, Arumaninayagam CR, Yates JT (1996) Kinetics measurements of CO photo-oxidation on Pt(111). J Chem Phys 105(4):1691–1696

    Article  CAS  Google Scholar 

  103. Hasselbrink E, Hirayama H, Demeijere A, Weik F, Wolf M, Ertl G (1992) Photodissociation and photodesorption of O2 adsorbed on Pd(111). Surf Sci 269:235–246

    Article  Google Scholar 

  104. Riedel D, Perdigao LMA, Hernandez-Pozos JL, Guo Q, Palmer RE, Foord JS, Kolasinski KW (2002) Surface photochemistry induced by ultrafast pulses of vacuum ultraviolet light: physisorbed oxygen on graphite. Phys Rev B 66(23):233405

    Article  CAS  Google Scholar 

  105. Lu Y, He ZX, Cutler JN, Southworth SH, Stolte WC, Samson JAR (1998) Dissociative photoionization study of O2. J Electron Spectrosc Relat Phenom 94(1–2):135–147

    Article  CAS  Google Scholar 

  106. Lin JJ, Hwang DW, Lee YT, Yang XM (1998) Photodissociation of O2 at 157 nm: experimental observation of anisotropy mixing in the O2 + hv → O(3P) + O(3P) channel. J Chem Phys 109(5):1758–1762

    Article  CAS  Google Scholar 

  107. Tonokura K, Shafer N, Matsumi Y, Kawasaki M (1991) Photodissociation of oxygen molecules at 226 nm in the Herzberg I system. J Chem Phys 95(5):3394–3398

    Article  CAS  Google Scholar 

  108. Wills AA, Cafolla AA, Comer J (1991) The production of autoionizing states of atomic oxygen by the photodissociation of O2. J Phys B 24(18):3989–4000

    Article  CAS  Google Scholar 

  109. Meng Y, Von Dreele RB, Toby BH, Chow P, Hu MY, Shen GY, Mao HK (2006) Hard X-ray radiation induced dissociation of N2 and O2 molecules and the formation of ionic nitrogen oxide phases under pressure. Phys Rev B 74(21):214107

    Article  CAS  Google Scholar 

  110. Sorokin AA, Bobashev SV, Tiedtke K, Richter M (2006) Multi-photon ionization of molecular nitrogen by femtosecond soft X-ray FEL pulses. J Phys B 39(14):L299–L304

    Article  CAS  Google Scholar 

  111. Kim YS, Bostwick A, Rotenberg E, Ross PN, Hong SC, Mun BS (2010) The study of oxygen molecules on Pt(111) surface with high resolution X-ray photoemission spectroscopy. J Chem Phys 133(3):034501

    Article  CAS  Google Scholar 

  112. Weng WZ, Wan HL, Li JM, Cao ZX (2004) Laser-induced formation of metal–peroxide linkages on the surface of lanthanum sesquioxide under. Angew Chem Int Ed 43(8):975–977

    Article  CAS  Google Scholar 

  113. Miller DJ, Oberg H, Kaya S, Casalongue HS, Friebel D, Anniyev T, Ogasawara H, Bluhm H, Pettersson LGM, Nilsson A (2011) Oxidation of Pt(111) under near-ambient conditions. Phys Rev Lett 107(19):195502

    Article  CAS  Google Scholar 

  114. Dumbuya K, Cabailh G, Lazzari R, Jupille J, Ringel L, Pistor M, Lytken O, Steinruck HP, Gottfried JM (2012) Evidence for an active oxygen species on Au/TiO2(110) model catalysts during investigation with in situ X-ray photoelectron spectroscopy. Catal Today 181(1):20–25

    Article  CAS  Google Scholar 

  115. Seader JD, Henley EJ (1998) Separation process principles. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of this work by the National Basic Research Program of China (973 Program: 2010CB732303, 2013CB933102), the Major Project of Chinese Ministry of Education (No. 309019), the National Natural Science Foundation of China (20923004, 21033006, 21073149, 21273178), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1036), and the PhD Programs Foundation of Chinese Ministry of Education (No. 20110121110010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Zheng, Y. & Wan, H. Kinetics and Active Surfaces for CO Oxidation on Pt-Group Metals Under Oxygen Rich Conditions. Top Catal 56, 1299–1313 (2013). https://doi.org/10.1007/s11244-013-0140-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0140-0

Keywords

Navigation