Skip to main content
Log in

Verification of Organic Capping Agent Removal from Supported Colloidal Synthesized Pt Nanoparticle Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The synthesis and application of colloidal metal nanoparticles as catalyst components are emerging research areas with potential to revolutionize the field of heterogeneous catalysis due to the ability to achieve simultaneous size, shape, and composition control and thus defined active sites. This contribution evaluates the role of the synthetic strategy on the catalytic properties of polymer stabilized Pt nanoparticles supported on silica and titania. Temperature-programmed oxidation (TPO) profiles confirmed that triple washings in ethanol/hexanes cycles removed the majority of organic species. Ethylene hydrogenation demonstrated that the turnover frequencies match the expected literature values at near ambient conditions. Finally, catalytic methanol decomposition and methanol oxidation showed differences with the support, which inferred that the Pt-support interface is free from organic impurities that would block the metal-support interactions. Moreover, ongoing studies on photocatalytic decomposition with titania showed enhancements with the addition of Pt and this result again supports the existence of the Pt-support interface. Together, these methodologies provide both an array of techniques to probe the role of the organic capping layers and a comprehensive demonstration that these systems are relatively free from organic capping interference with the optimized synthesis and purification protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Ed 47(48):9212–9228

    Article  CAS  Google Scholar 

  2. Castillo VA, Kuhn JN (2012) Role of the Ni:Fe ratio in ethylene hydrogenation activity for silica-supported Ni–Fe clusters prepared by Dendrimer-templating. J Phys Chem C 116:8627–8633

    Article  CAS  Google Scholar 

  3. Lee IC, Delbecq F, Morales R, Albiter MA, Zaera F (2008) Tuning selectivity in catalysis by controlling particle shape. Nat Mater 8:132–138

    Article  Google Scholar 

  4. Lee I, Zaera F (2010) Catalytic conversion of olefins on supported cubic platinum nanoparticles: selectivity of (1 0 0) versus (1 1 1) surfaces. J Catal 269:359–366

    Article  CAS  Google Scholar 

  5. Yin A-X, Min X-Q, Zhang Y-W, Yan C-H (2012) Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J Am Chem Soc 133:3816–3819

    Article  Google Scholar 

  6. Cuenya BR, Croy JR, Mostafa S, Behafarid F, Li L, Zhang Z, Yang JC, Wang Q, Frenkel AI (2010) Solving the structure of size-selected Pt nanocatalysts synthesized by inverse micelle encapsulation. J Am Chem Soc 132:8747–8756

    Article  Google Scholar 

  7. Van Santen RA (2009) Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42:57–66

    Article  Google Scholar 

  8. Bönnemann H, Richards RM (2001) Nanoscopic metal particles 2 synthetic methods and potential applications. Eur J Inorg Chem 2001:2455–2480

    Article  Google Scholar 

  9. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  CAS  Google Scholar 

  10. Kuhn JN, Tsung C-K, Huang W, Somorjai GA (2009) Effect of organic capping layers over monodisperse platinum nanoparticles upon activity for ethylene hydrogenation and carbon monoxide oxidation. J Catal 265:209–215

    Article  CAS  Google Scholar 

  11. Witham CA, Huang W, Tsung C-K, Kuhn JN, Somorjai GA, Toste FD (2010) Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat Chem 2:36–41

    Article  CAS  Google Scholar 

  12. Wang X, Sonström P, Arndt D, Stöver J, Zielasek V, Borchert H, Thiel K, Al-Shamery K, Bäumer M (2011) Heterogeneous catalysis with supported platinum colloids: a systematic study of the interplay between support and functional ligands. J Catal 278:143–152

    Article  CAS  Google Scholar 

  13. Sonström P, Arndt D, Wang X, Zielasek V, Baumer M (2011) Ligand capping of colloidally synthesized nanoparticles—a way to tune metal-support interactions in heterogeneous gas-phase catalysis. Angew Chem Int Ed 50:3888–3891

    Article  Google Scholar 

  14. Li Y, El-Sayed MA (2001) The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the suzuki reactions in aqueous solution. J Phys Chem B 105:8938–8943

    Article  CAS  Google Scholar 

  15. Narayanan R, El-Sayed MA (2008) Some aspects of colloidal nanoparticle stability, catalytic activity, and recycling potential. Top Catal 47:15–21

    Article  CAS  Google Scholar 

  16. Rioux RM, Song H, Grass M, Habas S, Niesz K, Hoefelmeyer JD, Yang P, Somorjai GA (2006) Monodisperse platinum nanoparticles of well-defined shape: synthesis, characterization, catalytic properties and future prospects. Top Catal 39(3–4):167–174

    Article  CAS  Google Scholar 

  17. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) high-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192–2202

    Article  CAS  Google Scholar 

  18. Song H, Rioux RM, Hoefelmeyer JD, Komor R, Niesz K, Grass M, Yang P, Somorjai GA (2006) Hydrothermal growth of mesporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. J Am Chem Soc 128:3027–3037

    Article  CAS  Google Scholar 

  19. Deutsch DS, Siani A, Fanson PT, Hirata H, Matsumoto S, Williams CT, Amiridis MD (2007) FT-IR investigation of the thermal decomposition of poly(amidoamine) dendrimers and dendrimer-metal nanocomposites supported on Al2O3 and ZrO2. J Phys Chem C 111:4246–4255

    Article  CAS  Google Scholar 

  20. Alexeev OS, Siani A, Lafaye G, Williams CT, Ploehn HJ, Amiridis MD (2006) EXAFS characterization of dendrimer-Pt nanocomposites used for the preparation of Pt/g-Al2O3 catalysts. J Phys Chem B 110:24903–24914

    Article  CAS  Google Scholar 

  21. Borodko Y, Habas SE, Koebel MM, Yang P, Frei H, Somorjai GA (2006) Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J Phys Chem B 110:23052–23059

    Article  CAS  Google Scholar 

  22. Borodko Y, Lee HS, Joo SH, Zhang Y, Somorjai GA (2010) Spectroscopic study of the thermal degradation of PVP-capped Rh and Pt nanoparticles in H2 and O2 environments. J Phys Chem C 114:1117–1126

    Article  CAS  Google Scholar 

  23. Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA (2007) Charge–transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C 111:6288–6295

    Article  CAS  Google Scholar 

  24. Xian J, Hua Q, Jiang Z, Ma Y, Huang W (2012) Size-dependent interaction of the poly(N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 28:6736–6741

    Article  CAS  Google Scholar 

  25. Tsung C-K, Kuhn JN, Huang W, Aliaga C, Hung L-I, Somorjai GA, Yang P (2009) Sub-10 nm platinum nanocrystals with size and shape control: catalytic study for ethylene and pyrrole hydrogenation. J Am Chem Soc 131(16):5817–5822

    Article  Google Scholar 

  26. Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutching GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556

    Article  CAS  Google Scholar 

  27. Blavo SO, Baldyga L, Sanchez MD, Kuhn JN (2011) The effect of stabilizing agent on platinum nanoparticles and implications towards the oxygen reduction reaction. J ASTM Int 8:1–9

    Article  Google Scholar 

  28. Aliaga C, Park JY, Yamada Y, Lee HS, Tsung C-K, Yang P, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J Phys Chem C 113:6150–6155

    Article  CAS  Google Scholar 

  29. Krier JM, Michalak WD, Baker LR, An K, Komvopoulos K, Somorjai GA (2012) Sum frequency generation vibrational spectroscopy of colloidal platinum nanoparticle catalysts: disordering versus removal of organic capping. J Phys Chem C 116:17540–17546

    Article  CAS  Google Scholar 

  30. Crespo-Quesada M, Andanson J-M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L (2011) UV ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and Catalytic behavior. Langmuir 27:7909–7916

    Article  CAS  Google Scholar 

  31. Wang Y, Ren J, Deng K, Gui L, Tang Y (2000) Preparation of tractable platinum, rhodium, and ruthenium nanoclusters with small particle size in organic media. Chem Mater 12:1622–1627

    Article  Google Scholar 

  32. Teranishi T, Hosoe M, Tanaka T, Miyake M (1999) Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition. J Phys Chem B 103:3818–3827

    Article  CAS  Google Scholar 

  33. Kuhn JN, Huang W, Tsung C-K, Zhang Y, Somorjai GA (2008) Structure sensitivity of carbon−nitrogen ring opening: impact of platinum particle size from below 1 to 5 nm upon pyrrole hydrogenation product selectivity over monodisperse platinum nanoparticles loaded onto mesoporous silica. J Am Chem Soc 130:14026–14027

    Article  CAS  Google Scholar 

  34. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  35. Baldyga LM, Blavo SO, Kuo C-H, Tsung CK, Kuhn JN (2012) Size-dependent sulfur poisoning of silica-supported monodisperse Pt nanoparticle hydrogenation catalysts. ACS Catal 2:2626–2629

    Article  CAS  Google Scholar 

  36. Das A, Frenkel M, Gadalla NAM, Kudchadker S, Marsh KN, Rodgers AS, Wilhoit RC (1993) Thermodynamic and thermophysical properties of organic nitrogen compounds. Part II. J Phys Chem Ref Data 22(3):659

    Article  CAS  Google Scholar 

  37. Qayyum E, Castillo VA, Warrington K, Barakat MA, Kuhn JN (2012) Methanol oxidation over silica-supported Pt and Ag nanoparticles: towards selective production of hydrogen and carbon dioxide. Catal Comm 28:128–133

    Article  CAS  Google Scholar 

  38. Farkas A, Farkas L (1938) The catalytic interaction of ethylene and heavy hydrogen on platinum. J Am Chem Soc 60:22–28

    Article  CAS  Google Scholar 

  39. Bond GC (1956) The Reaction of ethylene with deuterium over various types of platinum catalyst. Trans Farad Soc 52:1235–1244

    Article  CAS  Google Scholar 

  40. Sinfelt JH (1964) Kinetics of ethylene hydrogenation over a platinum-silica catalyst. J Phys Chem 68:856–860

    Article  CAS  Google Scholar 

  41. Dorling TA, Eastlake MJ, Moss RL (1969) The structure and activity of supported metal catalysts IV. Ethylene hydrogenation on platinum/silica catalysts. J Catal 14:23–33

    Article  CAS  Google Scholar 

  42. Schlatter JC, Boudart M (1972) Hydrogenation of ethylene on supported platinum. J Catal 24:482–492

    Article  CAS  Google Scholar 

  43. Cortright RD, Goddard SA, Rekoske JE, Dumesic JA (1991) Kinetic study of ethylene hydrogenation. J Catal 127:342–353

    Article  CAS  Google Scholar 

  44. Rekoske JE, Cortright RD, Goddard SA, Sharma SB, Dumesic JA (1992) Microkinetic analysis of diverse experimental data for ethylene hydrogenation on platinum. J Phys Chem 96:1888–1894

    Article  Google Scholar 

  45. Zaera F, Somorjai GA (1984) Hydrogenation of ethylene over platinum (111) single-crystal surfaces. J Am Chem Soc 106:2288–2293

    Article  CAS  Google Scholar 

  46. Cremer PS, Somorjai GA (1995) Surface science and catalysis of ethylene hydrogenation. J Chem Soc, Faraday Trans 91:3671–3677

    Article  CAS  Google Scholar 

  47. Cremer PS, Su X, Shen YR, Somorjai GA (1996) Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation. J Am Chem Soc 118:2942–2949

    Article  CAS  Google Scholar 

  48. McCrea KR, Somorjai GA (2000) SFG-surface vibrational spectroscopy studies of structure sensitivity and insensitivity in catalytic reactions: cyclohexene dehydrogenation and ethylene hydrogenation on Pt (111) and Pt (100) crystal surfaces. J Molec Catal A 163:43–53

    Article  CAS  Google Scholar 

  49. Boudart M (1985) Heterogeneous catalysis by metals. J Mol Catal 30:27–38

    Article  CAS  Google Scholar 

  50. Bond GC (1991) Supported metal catalysts: some unsolved problems. Chem Soc Rev 20:441–475

    Article  CAS  Google Scholar 

  51. Somorjai GA, Carrarza J (1985) Structure sensitivity of catalytic reactions. Ind Eng Chem Fund 25:63–69

    Article  Google Scholar 

  52. Backman AL, Masel RI (1988) J Vac Sci Technol 6(3):1137–1139

    Article  Google Scholar 

  53. Ford LP, Nigg HL, Blowers P, Masel RI (1998) The role of step atom density on the binding and reaction of surface species. J Catal 179:163–170

    Article  CAS  Google Scholar 

  54. Contreras AM, Grunes J, Yan X-M, Liddle A, Somorjai GA (2005) Fabrication of platinum nanoparticles and nanowires by electron beam lithography (EBL) and nanoimprint lithography (NIL): comparison of ethylene hydrogenation kinetics. Catal Lett 100(3–4):115–124

    Article  CAS  Google Scholar 

  55. Grunes J, Zhu J, Anderson EA, Somorjai GA (2002) Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: determination of active metal surface area. J Phys Chem B 106:11463–11468

    Article  CAS  Google Scholar 

  56. Grass ME, Yue Y, Habas SE, Rioux RM, Teall CI, Yang P, Somorjai GA (2008) Silver ion mediated shape control of platinum nanoparticles: removal of silver by selective etching leads to increased catalytic activity. J Phys Chem C 112:4804–4979

    Article  Google Scholar 

  57. Croy JR, Mostafa S, Liu J, Sohn Y, Cuenya BR (2007) Size dependent study of MeOH decomposition over size-selected Pt nanoparticles synthesized via micelle encapsulation. Catal Lett 118:1–7

    Article  CAS  Google Scholar 

  58. Croy JR, Mostafa S, Liu J, Sohn Y, Heinrich H, Cuenya BR (2007) Support dependence of MeOH decomposition over size-selected Pt nanoparticles. Catal Lett 119:209–216

    Article  CAS  Google Scholar 

  59. Skoplyak O, Menning CA, Barteau MA, Chen JG (2007) Experimental and theoretical study of reactivity trends for methanol on Co/Pt(111) and Ni/Pt(111) bimetallic surfaces. J Chem Phys 127:114707–114711

    Article  Google Scholar 

  60. Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63:201–254

    Article  CAS  Google Scholar 

  61. Bartholomew CH, Farrauto RJ (2006) Fundamentals of Industrial Catalytic Processes, 2nd edn. Wiley, New York

  62. Barakat MA, Al-Hutailah RI, Hashim MH, Qayyum E, Kuhn JN (2013) Titania-supported silver-based bimetallic nanoparticles as photocatalysts. Environ Sci Pollut Res 20:3751–3759

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Umit S. Ozkan for her many contributions to the field of heterogeneous catalysis. The authors gratefully acknowledge funding from King Abdulaziz University and internal funding from the University of South Florida, in part by Grant No. 0074332. Partial support from NSF award number 0851973 is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blavo, S.O., Qayyum, E., Baldyga, L.M. et al. Verification of Organic Capping Agent Removal from Supported Colloidal Synthesized Pt Nanoparticle Catalysts. Top Catal 56, 1835–1842 (2013). https://doi.org/10.1007/s11244-013-0120-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0120-4

Keywords

Navigation