Skip to main content

Advertisement

Log in

Aqueous Phase Glycerol Reforming with Pt and PtMo Bimetallic Nanoparticle Catalysts: The Role of the Mo Promoter

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The turnover rate (TOR, normalized to sites measured by CO chemisorption before reaction) and selectivity for the aqueous phase reforming of glycerol have been determined for Pt/C and PtMo/C catalysts. While the TOR of PtMo/C is higher than that of Pt/C by about 4 times at comparable conversion, the selectivity to C–O bond cleavage is higher, thus reducing the H2 yield at high conversion. Under reaction conditions on Pt/C, CO is observed as the most abundant Pt surface species with a fractional coverage of about 0.6 using operando X-ray absorption spectroscopy. Since there is little CO in the effluent (CO2:CO ratios > 100:1, when CO is detected), it is thought that surface CO is converted to H2 and CO2 by the water gas shift reaction. DFT calculations suggest that the role of metallic Mo is to alter the electronic properties of Pt lowering the binding energy of CO and reducing the activation energies of dehydrogenation and C–O bond cleavage. Because the activation energy for C–O cleavage is lowered more than for dehydrogenation, the selectivity for C–O bond cleavage is increased, ultimately lowering the H2 yield compared to Pt/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry. Catal Eng Chem Rev 106:4044–4098

    CAS  Google Scholar 

  2. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  3. Cortright RD, Davda RR, Dumesic JA (2002) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature 418:964–967

    Article  CAS  Google Scholar 

  4. Luo N, Zhao X, Cao F, Xiao T, Fang D (2007) Thermodynamic study on hydrogen generation from different glycerol reforming processes. Energy Fuels 21:3505–3512

    Article  CAS  Google Scholar 

  5. Kunkes EL, Simonetti DA, Dumesic JA, Pyrz WD, Murillo LE, Chen JG, Buttrey DJ (2008) The role of rhenium in the conversion of glycerol to synthesis gas over carbon supported platinum-rhenium catalysts. J Catal 260:164–177

    Article  CAS  Google Scholar 

  6. Kunkes EL, Soares RR, Simonetti DA, Dumesic JA (2009) An integrated catalytic approach for the production of hydrogen by glycerol reforming coupled with water-gas shift. Appl Catal B 90:693–698

    Article  CAS  Google Scholar 

  7. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gärtner CA, Dumesic JA (2008) Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 322:417–421

    Article  CAS  Google Scholar 

  8. Huber GW, Shabaker JW, Evans ST, Dumesic JA (2006) Aqueous-phase reforming of ethylene glycol over supported Pt and Pd bimetallic catalysts. Appl Catal B 62:226–235

    Article  CAS  Google Scholar 

  9. Soares RR, Simonetti DA, Dumesic JA (2006) Glycerol as a source for fuels and chemicals by low-temperature catalytic processing. Angew Chem Int Ed 45:3982–3985

    Article  CAS  Google Scholar 

  10. Dietrich P, Lobo-Lapidus R, Wu T, Sumer A, Akatay M, Fingland B, Guo N, Dumesic J, Marshall C, Stach E, Jellinek J, Delgass W, Ribeiro F, Miller J (2012) Aqueous phase glycerol reforming by PtMo bimetallic nano-particle catalyst: product selectivity and structural characterization. Top Catal 55:53–69

    Article  CAS  Google Scholar 

  11. Fingland B, Ribeiro F, Miller J (2009) Simultaneous measurement of X-ray absorption spectra and kinetics: a fixed-bed, plug-flow operando reactor. Catal Lett 131:1–6

    Article  CAS  Google Scholar 

  12. Kispersky VF, Kropf AJ, Ribeiro FH, Miller JT (2012) Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NOx by NH3. Phys Chem Chem Phys 14:2229–2238

    Article  CAS  Google Scholar 

  13. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron–gas correlation energy. Phys Rev B 45:13244

    Article  Google Scholar 

  14. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  15. Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) Basis set exchange: a community database for computational sciences. J Chem Inf Model 47:1045–1052

    Article  CAS  Google Scholar 

  16. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL, de Jong WA (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181:1477–1489

    Article  CAS  Google Scholar 

  17. Miller JT, Kropf AJ, Zha Y, Regalbuto JR, Delannoy L, Louis C, Bus E, van Bokhoven JA (2006) The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts. J Catal 240:222–234

    Article  CAS  Google Scholar 

  18. Lei Y, Jelic J, Nitsche L, Meyer R, Miller J (2011) The effect of particle size and adsorbates on L3, L2 and L1 X-ray absorption near-edge spectra of supported Pt nanoparticles. Top Catal 54:334–348

    Article  CAS  Google Scholar 

  19. de Graaf J, van Dillen AJ, de Jong KP, Koningsberger DC (2001) Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J Catal 203:307–321

    Article  Google Scholar 

  20. Frenkel AI, Hills CW, Nuzzo RG (2001) A View from the Inside: complexity in the atomic scale ordering of supported metal nanoparticles. J Phys Chem B 105:12689–12703

    Article  CAS  Google Scholar 

  21. Guo N, Fingland BR, Williams WD, Kispersky VF, Jelic J, Delgass WN, Ribeiro FH, Meyer RJ, Miller JT (2010) Determination of CO, H2O and H2 coverage by XANES and EXAFS on Pt and Au during water gas shift reaction. Phys Chem Chem Phys 12:5678–5693

    Article  CAS  Google Scholar 

  22. Stakheev AY, Zhang Y, Ivanov AV, Baeva GN, Ramaker DE, Koningsberger DC (2007) Separation of geometric and electronic effects of the support on the CO and H2 chemisorption properties of supported Pt particles: the effect of ionicity in modified alumina supports. J Phys Chem C 111:3938–3948

    Article  CAS  Google Scholar 

  23. Gruene P, Fielicke A, Meijer G, Rayner DM (2008) The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. Phys Chem Chem Phys 10:6144–6149

    Article  CAS  Google Scholar 

  24. Rupprechter G, Dellwig T, Unterhalt H, Freund HJ (2001) High-pressure carbon monoxide adsorption on Pt(111) revisited: a sum frequency generation study. J Phys Chem B 105:3797–3802

    Article  CAS  Google Scholar 

  25. Jellinek J, Krissinel EB (1996) NinAlm alloy clusters: analysis of structural forms and their energy ordering. Chem Phys Lett 258:283–292

    Article  CAS  Google Scholar 

  26. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910

    Article  CAS  Google Scholar 

  27. Jellinek J (2008) Nanoalloys: tuning properties and characteristics through size and composition. Faraday Discuss 138:11–35

    Article  CAS  Google Scholar 

  28. Liu B, Greeley J (2011) Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J Phys Chem C 115:19702–19709

    Article  CAS  Google Scholar 

  29. Shriver D, Atkins P, Overton T, Rourke J (2009) Inorganic chemistry. W. H. Freeman, New York

    Google Scholar 

  30. Schumacher N, Boisen A, Dahl S, Gokhale AA, Kandoi S, Grabow LC, Dumesic JA, Mavrikakis M, Chorkendorff I (2005) Trends in low-temperature water–gas shift reactivity on transition metals. J Catal 229:265–275

    Article  CAS  Google Scholar 

  31. Williams WD, Bollmann L, Miller JT, Delgass WN, Ribeiro FH (2012) Effect of molybdenum addition on supported platinum catalysts for the water–gas shift reaction. Appl Catal B 125:206–214

    Article  CAS  Google Scholar 

  32. Nair H, Baertsch CD (2008) Method for quantifying redox site densities in metal oxide catalysts: application to the comparison of turnover frequencies for ethanol oxidative dehydrogenation over alumina-supported VOx, MoOx, and WOx catalysts. J Catal 258:1–4

    Article  CAS  Google Scholar 

  33. Nair H, Gatt JE, Miller JT, Baertsch CD (2011) Mechanistic insights into the formation of acetaldehyde and diethyl ether from ethanol over supported VOx, MoOx, and WOx catalysts. J Catal 279:144–154

    Article  CAS  Google Scholar 

  34. Chia M, Pagán-Torres YJ, Hibbitts D, Tan Q, Pham HN, Datye AK, Neurock M, Davis RJ, Dumesic JA (2011) Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium–rhenium catalysts. J Am Chem Soc 133:12675–12689

    Article  CAS  Google Scholar 

  35. Koso S, Ueda N, Shinmi Y, Okumura K, Kizuka T, Tomishige K (2009) Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J Catal 267:89–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, and Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. J.J. was also supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences, U.S. Department of Energy under Contract DE-AC02-06CH11357. This research used the resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract DE-AC02-05CH11231 and of the Laboratory Computing Resource Center (Fusion/LCRC) at Argonne National Laboratory. The authors would like to thank M. Cem Akatay for his assistance with the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabio H. Ribeiro or Jeffrey T. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, P.J., Wu, T., Sumer, A. et al. Aqueous Phase Glycerol Reforming with Pt and PtMo Bimetallic Nanoparticle Catalysts: The Role of the Mo Promoter. Top Catal 56, 1814–1828 (2013). https://doi.org/10.1007/s11244-013-0115-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0115-1

Keywords

Navigation