Skip to main content
Log in

Interconversion of Lactose to Lactulose in Alkaline Environment: Comparison of Different Catalysis Concepts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Interconversion of lactulose to lactulose with the aim to determine and optimize the yield of ketose was carried out. Various homogenous and heterogeneous alkaline catalysts were applied (NaOH, MgO, hydrotalcite etc.). The selectivity and activity of the catalysts were compared. The results gave insight to the performance differences among the screened catalysts under the various reaction conditions. From the activity performance point of view, the conversion was limited by the formation of acidic end-products. In general, the selectivity decreased with conversion and the conversion-selectivity pattern was independent of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lobry de Bruyn CA, Alberda van Ekenstein W (1895) Rec Trav Chim 14:201–206

  2. Angyal SJ (1997) Carbohydr Res 300:279–281

    Article  CAS  Google Scholar 

  3. Angyal SJ (2001) Top Curr Chem 215:1–13

    Article  CAS  Google Scholar 

  4. Speck JC Jr (1958) Adv Carbohydr Chem 13:63–103

    Article  CAS  Google Scholar 

  5. Bilik V (1972) Chem Zvesti 26:183–186

    CAS  Google Scholar 

  6. Petrus L, Petrusova M, Hricoviniova Z (2001) Top Curr Chem 215:15–41

    Article  CAS  Google Scholar 

  7. Osanai S (2001) Top Curr Chem 215:43–76

    Article  CAS  Google Scholar 

  8. Lobry de Bruyn CA, Alberda van Ekenstein W (1896) Recl Trav Chim Pays-Bas 15:92–96

  9. Beadle JR, Saunders JP, Wajda Jr. TJ (1992) US5078796

  10. Vagnoli L, Giacomelli S, Manoni M, Cipolletti G (2012) US8227595

  11. Cohen SS (1953) J Biol Chem 201:71–84

    CAS  Google Scholar 

  12. Berthelsen H, Eriknauer K, Bottcher K, Christensen HJS, Stougaard P, Hansen OC, Jorgensen F (2006) US6991923

  13. Kim Y-S, Park C-S, Oh D-K (2006) Enzym Microb Technol 39:903–908

    Article  CAS  Google Scholar 

  14. Francis LH (1973) US3721585

  15. Thomas FA (1977) US4001198

  16. Aider M, de Halleux D (2007) Trends Food Sci Technol 18:356–364

    Article  CAS  Google Scholar 

  17. Fox PF (2009) In: McSweeney PLH, Fox PF (eds) Advanced dairy chemistry, vol 3: Lactose, Water, salts and minor constituents, 3rd edn. Springer Science + Bussines Media, New York

    Google Scholar 

  18. Ganzle MG, Haase G, Jelen P (2008) Int Dairy J 18:685–694

    Article  Google Scholar 

  19. Blair MG, Sowden JC (1955) J Am Chem Soc 77:3323–3325

    Article  CAS  Google Scholar 

  20. Zadow JG (1984) J Dairy Sci 67:2654–2679

    Article  CAS  Google Scholar 

  21. Villamiel M, Corzoa N, Fodab MI, Montesc F, Olano A (2002) Food Chem 76:7–11

    Article  CAS  Google Scholar 

  22. Zokaee F, Kaghazchi T, Zare A, Soleimani M (2002) Process Biochem 37:629–635

    Article  CAS  Google Scholar 

  23. Mendicino JF (1960) J Am Chem Soc 20:4975–4979

    Article  Google Scholar 

  24. Guth JH, Prospect M, Tumerman L (1970) US3546206

  25. Ge Pan G, Melton LD (2007) J Agric Food Chem 55:10036–10042

    Article  CAS  Google Scholar 

  26. Sowden JC (1954) J Am Chem Soc 76:4487–4488

    Article  CAS  Google Scholar 

  27. Corbett WM, Kenner J (1953) J Chem Soc 2245–2247. doi:10.1039/JR9530002245

  28. Corbett WM, Kenner J (1954) J Chem Soc 1789–1791. doi:10.1039/JR9540001789

  29. Diaz N, Clotet R (1995) Alimentaria 259:35–38

    CAS  Google Scholar 

  30. Gakhokidze R (1980) Russ Chem Rev 49:222–236

    Article  Google Scholar 

  31. Weisberg SM (1954) J Dairy Sci 37:1106–1115

    Article  CAS  Google Scholar 

  32. Gyurcsik B, Nagy L (2000) Coord Chem Rev 203:81–149

    Article  CAS  Google Scholar 

  33. Angyal SJ (1990) Carbohydr Res 200:181–188

    Article  CAS  Google Scholar 

  34. Miller A (1985) US4542032

  35. Carobbi R, Miletti S, Franci V (1985) US4536221

  36. Matabola KH (2006) M.Sc. Thesis, University of South Africa

  37. Brocker FJ, Kainer L (1971) DE2024282

  38. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173–301

    Article  CAS  Google Scholar 

  39. Sels BF, De Vos DE, Jacobs PA (2001) Catal Rev Sci Eng 43:443–488

    Article  CAS  Google Scholar 

  40. Tichit D, Gerardin C, Durand R, Coq B (2006) Top Cat 39:89–93

    Article  CAS  Google Scholar 

  41. Zhang F, Xiang X, Li F, Duan X (2008) Catal Surv Asia 12:253–265

    Article  CAS  Google Scholar 

  42. Tichit D, Coq B (2003) CATTECH 7:206–217

    Article  CAS  Google Scholar 

  43. Reinik J, Heinmaa I, Mikkola J-P, Kordas K, Kirso U (2010) Oil Shale 27:47–57

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is a part of Åbo Akademi University Process Chemistry Centre activities within the Academy of Finland, Finnish Centre of Excellence programmes (200–-2011). The authors gratefully acknowledge the support of the Finnish Funding Agency for Technology and Innovation (TEKES) and cooperating industrial partners to URAKAMU project (TEKES BioRefine, No. 2326/31/07). In Sweden, the Bio4Energy programme is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hajek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajek, J., Murzin, D.Y., Salmi, T. et al. Interconversion of Lactose to Lactulose in Alkaline Environment: Comparison of Different Catalysis Concepts. Top Catal 56, 839–845 (2013). https://doi.org/10.1007/s11244-013-0044-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0044-z

Keywords

Navigation