Skip to main content
Log in

Synthesis of Nickel Phosphide Nanorods as Catalyst for the Hydrotreating of Methyl Oleate

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Arrays of nickel phosphide nanorods were successfully synthesized by nanocasting using mesostructured silica SBA-15 as a hard template (HT-Ni2P). After temperature-programmed reduction of the phosphate precursor infiltrated within the pore walls of SBA-15, the unsupported material was obtained by removing the silica matrix with diluted HF. The pore channel of the SBA-15 template stabilizes the Ni2P particles, preventing sintering after the high reduction temperature and shaping their elongated morphology. Moreover, HT-Ni2P catalyst shows an improvement in the textural properties with a significantly higher surface area than the reference sample synthesized in the absence of template. X-ray diffraction revealed that the only crystalline phase present in this material was Ni2P. On the other hand, transmission electron microscopy shows that the catalyst is mainly constituted by agglomerates of nanorods. Through EDX microanalysis the efficient removal of silicon was confirmed. Under hydrotreating conditions, nanorods of Ni2P show a fourfold enhancement in the conversion of methyl oleate with respect to conventional Ni2P synthesized in absence of hard template. Nevertheless, when these data are normalized to surface area, the specific activity of HT-Ni2P nanorods is significantly lower than that of the conventionally prepared sample. Differences in selectivity were also observed as Ni2P nanorods favored the decarboxylation reaction leading to a higher yield of n-heptadecane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hicks JC (2011) J Phys Chem Lett 2:2280–2287

    Article  CAS  Google Scholar 

  2. Furimsky E (2000) Appl Catal A 199(2):147–190

    Article  CAS  Google Scholar 

  3. Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW (2010) Science 330:1222

    Article  CAS  Google Scholar 

  4. Knothe G (2010) Prog Energy Combust. 36:364–376

    Article  CAS  Google Scholar 

  5. Kubickova I, Snare M, Eranen K, Maki-Arvela P, Murzin DY (2005) Catal Today 106:197

    Article  CAS  Google Scholar 

  6. Boda L, Onyestya G, Solt H, Lonyi F, Valyon J, Thernesz A (2010) Appl Catal A 374:158

    Article  CAS  Google Scholar 

  7. Kubicka D, Kaluz L (2010) Appl Catal A 372:199

    Article  CAS  Google Scholar 

  8. Kubicka D, Horácek J (2011) Appl Catal A 394:9

    Article  CAS  Google Scholar 

  9. Murata K, Liu Y, Inaba M, Takahara I (2010) Energy Fuels 24:2404

    Article  CAS  Google Scholar 

  10. Zhao HY, Li D, Bui P, Oyama ST (2011) Appl Catal A 391:305

    Article  CAS  Google Scholar 

  11. Whiffen VML, Smith KJ (2010) Energy Fuel 24:4728

    Article  CAS  Google Scholar 

  12. Li K, Wang R, Chen J (2011) Energy Fuels 25:854–863

    Article  CAS  Google Scholar 

  13. Yang YX, Ochoa-Hernández C, de la Peña O’Shea VA, Coronado JM, Serrano DP (2012) ACS Catal. 2(4):592–598

    Article  CAS  Google Scholar 

  14. Stinner C, Prins R, Weber Th (2001) J Catal 202:187–194

    Article  CAS  Google Scholar 

  15. Yang PF, Jiang ZX, Ying PL, Li C (2008) J Catal 253:66–73

    Article  CAS  Google Scholar 

  16. Yang SF, Liang CH, Prins R (2006) J Catal 241:465–469

    Article  CAS  Google Scholar 

  17. Wang R, Smith KJ (2010) Appl Catal A 380:149–164

    Article  CAS  Google Scholar 

  18. Kim HY, Ma XL, Song CS (2005) Energy Fuel 19:353

    Article  CAS  Google Scholar 

  19. Yang SF, Liang CH, Prins R (2006) J Catal 237:118–130

    Article  CAS  Google Scholar 

  20. Gaudette AF, Burns AW, Hayes JR, Smith MC, Bowker RH, Seda T, Bussell ME (2010) J Catal 272:18

    Article  CAS  Google Scholar 

  21. Oyama ST, Lee YK (2008) J Catal 258:393

    Article  CAS  Google Scholar 

  22. Oyama ST, Gott T, Zhao H, Lee Y-K (2009) Catal Today 143:94

    Article  CAS  Google Scholar 

  23. Zhao D, Yang P, Huo Q, Chmelka BF, Stucky GD (1998) Curr Opin Solid State Mater Sci 3:111–121

    Article  CAS  Google Scholar 

  24. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  25. Li K, Wang R, Chen J (2011) Energy Fuels 25(3):854–863

    Article  CAS  Google Scholar 

  26. Koranyi TI, Coumans AE, Hensen EJM, Ryoo R, Kim HS, Pfeifer E, Kasztovszky Z (2009) Appl Catal A 365:48–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has received financial support of the RESTOENE and LIGCATUP program funded by, respectively, the Consejería de Educación of Comunidad de Madrid and the Spanish Ministry of Science and Competiveness. YXY and VPO thank the financial support of, respectively, AMAROUT (FP7-PEOPLE) and “Ramón y Cajal” (MICINN) programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Coronado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Ochoa-Hernández, C., Pizarro, P. et al. Synthesis of Nickel Phosphide Nanorods as Catalyst for the Hydrotreating of Methyl Oleate. Top Catal 55, 991–998 (2012). https://doi.org/10.1007/s11244-012-9886-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9886-z

Keywords

Navigation