Skip to main content
Log in

Hydroconversion of n-Alkanes Over Carbided Rh/Molybdena Zirconia Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A low loading of Rh (0.5 wt%) was added to a MoO3/ZrO2 sample with the objective of lowering the temperature at which the molybdena phase could be transformed in the presence of CH4/H2 to produce an active carbide phase for the hydroisomerisation reaction of linear alkanes. The presence of Rh reduced the reduction temperature of the supported molybdena in hydrogen alone and reduced the temperature required for the onset of carburisation in hydrogen/methane. Pre-treatment cycles of reduction and oxidation further enhanced the extent of rhodium–molybdena interactions and further lowered the temperature required to form the carbidic phase. Although the presence of rhodium facilitated the formation of an active molybdenum carbide phase, the products formed in the hydroisomerisation reactions of both hexane and octane were mainly hydrogenolysis products due to the high activity of rhodium for these reactions under the conditions employed. The distribution of the fragments were different for sample carbided after calcination and sample carbided after a reduction–oxidation cycle suggesting a surface composition which was significantly different for the samples prepared by the two different routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Alexander A-M, Hargreaves JSJ (2010) Chem Soc Rev 39:4388

    Article  CAS  Google Scholar 

  2. Hwu HH, Chen JG (2005) Chem Rev 105:185

    Article  CAS  Google Scholar 

  3. Galadima A, Wells RPK, Anderson JA (2012) Appl Petrochem Res 1:35–43

    Article  Google Scholar 

  4. Anderson JA, Guerrero-Ruiz A, Fierro JLG (1994) Top Catal 1:123–136

    Article  CAS  Google Scholar 

  5. Kunimori K, Wakasugi T, Yamakawa F, Oyanagi H, Nakamura J, Uchijima T (1991) Catal Lett 9:331–338

    Google Scholar 

  6. Wang Z, Rochester CH, Anderson JA (1999) J Catal 184:213–223

    Article  CAS  Google Scholar 

  7. Kojima R, Kikuchi S, Ma H, Bai J, Ichikawa M (2006) Catal Lett 110(1–2):15–21

    Article  CAS  Google Scholar 

  8. Jung TK, Kim WB, Rhee CH, Lee JS (2004) Chem Mater 16:307–314

    Article  CAS  Google Scholar 

  9. Lee JS, Volpe L, Ribeiro FH, Boudart M (1988) J Catal 112:44–53

    Article  CAS  Google Scholar 

  10. Raj KJ, Viswanathan B (2009) Indian J Chem. 48A:1378–1382

    CAS  Google Scholar 

  11. Wiwattanapongpan J, Mekasuwandumrong O, Chaisuk C, Praserthdam P (2007) Ceram Int 33:1469–1473

    Article  CAS  Google Scholar 

  12. Chary KVR, Reddy KR, Kishan G, Niemnatsverdriet JW, Mestl G (2004) J Catal 226:283–291

    Article  CAS  Google Scholar 

  13. Kenney C, Maham Y, Nelson AE (2005) Thermochim Acta 434:55–61

    Article  CAS  Google Scholar 

  14. Bhaskar T, Reddy KR, Kumar CP, Murthy MRVS, Chary KVR (2001) Appl Catal A 211:189–201

    Article  CAS  Google Scholar 

  15. Calafat A, Avilan A, Aldana J (2000) Appl Catal A 201:215–223

    Article  CAS  Google Scholar 

  16. Hanif A, Xiao T, York APE, Sloan J, Green MLH (2002) Chem Mater 14:1009–1015

    Article  CAS  Google Scholar 

  17. Xiao T, York APE, Coleman KS, Claridge JB, Sloan J, Charnock J, Green MLH (2001) J Mater Chem 11:3094–3098

    Article  CAS  Google Scholar 

  18. Faraldos M, Bañares MA, Anderson JA, Hu H, Wachs IE, Fierro JLG (1996) J Catal 160:214–221

    Article  CAS  Google Scholar 

  19. Chioma I, Galadima A, Anderson JA (unpublished studies)

  20. Wang H, Wang X, Du X, Li W, Tao (2007) Chem Mater 19:1801–1807

    Article  CAS  Google Scholar 

  21. Xiao T, York APE, Williams VC, Almegren H, Hani A, Zhou X, Green MLH (2000) Chem Mater 12:3896–3905

    Article  CAS  Google Scholar 

  22. Zhu Q, Chen Q, Yang X, Ke D (2007) Mate Lett 61:5173–5174

    Article  CAS  Google Scholar 

  23. Volpe L, Boudart MJ (1985) Solid State Chem 59:332–347

    Article  CAS  Google Scholar 

  24. Ramis G, Busca G, Lorenzelli V (1987) Appl Catal 32:305–313

    Article  CAS  Google Scholar 

  25. Wachs IE (1997) Catal Today 27:437–455

    Article  Google Scholar 

  26. Platero EE, Mentruit MP (1995) Catal Lett 30:31–39

    Article  Google Scholar 

  27. Sahu HR, Rao GR (2000) Bull Mater Sci 23:349–354

    Article  CAS  Google Scholar 

  28. Hong Z, Fogash KB, Watwe RM, Kim B, Masqueda-Jimenez BI, Natal-Santiago MA, Hill JM, Dumesic JA (1998) J Catal 178:489–498

    Google Scholar 

  29. Song SX, Kydd RA (1998) J Chem Soc Faraday Trans 94:1333–1338

    Article  CAS  Google Scholar 

  30. Gonzalez MR, Kobe JM, Fogash KB, Dumesic JA (1996) J Catal 160:290–298

    Article  CAS  Google Scholar 

  31. Yaluris G, Larson RB, Kobe JM, Gonzalez MR, Fogash KB, Dumesic JA (1996) J Catal 158:336–342

    Article  CAS  Google Scholar 

  32. Wen MY, Wender I, Tierney JW (1990) Energy Fuels 4:372

    Article  CAS  Google Scholar 

  33. Anderson GC, Rosin RR, Stine MA, Hunter MJ (2004) NPRA annual meeting, San Antonio, March 21–23, 2004, paper AM-04-46

  34. Cog B, Bittar A, Figueras F (1990) Appl Catal 59:103–121

    Article  Google Scholar 

  35. Das TK, Chandwadkar AJ, Soni HS, Sivasanker S (1997) Catal Lett 44:113–117

    Article  CAS  Google Scholar 

  36. Martins A, Silva JM, Ribeiro FR, Ribeiro MF (2006) Catal Lett 109:83–87

    Article  CAS  Google Scholar 

  37. Modhera BK, Chakraborty M, Parikh PA, Jasra RV (2009) Pet Sci Technol 27:1196–1208

    Article  CAS  Google Scholar 

  38. Aboul-Gheti AK, Abdel-Hamid SM, El-Desouki DS (2010) Pet Sci Technol 28:582–593

    Article  Google Scholar 

  39. Paixao V, Santos C, Nunes R, Silva JM, Pires J, Carvalho AP, Martins A (2009) Catal Lett 129:331–335

    Article  CAS  Google Scholar 

  40. de Gauw FJMM, van Grondelle J, van Santen RAJ (2002) Catalysis 206:295–304

    Article  Google Scholar 

  41. Weitkemp J (1983) Appl Catal 8:123–141

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Petroleum Technology Development Fund (PTDF), Nigeria for a postgraduate scholarship (to A.G). The authors also thank Dr Justin S.J. Hargreaves and Andy Monaghan, West Chem (University of Glasgow) for access to and assistance with the in situ XRD facility).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galadima, A., Wells, R.K.P. & Anderson, J.A. Hydroconversion of n-Alkanes Over Carbided Rh/Molybdena Zirconia Catalysts. Top Catal 55, 931–939 (2012). https://doi.org/10.1007/s11244-012-9877-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9877-0

Keywords

Navigation