Skip to main content
Log in

Water-Compatible Lewis Acid-Catalyzed Conversion of Carbohydrates to 5-Hydroxymethylfurfural in a Biphasic Solvent System

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Water-compatible lanthanide-based Lewis acids for the efficient conversion of glucose and other carbohydrates to produce 5-hydroxymethylfurfural (HMF) were demonstrated in a biphasic reactor using sec-butyl phenol as the extracting solvent. The reaction of glucose dehydration to HMF was found to proceed under near-neutral conditions (pH = 5.5) and a moderately high yield of 42 mol % could be obtained. The combined catalytic system also showed effectiveness to convert other polysaccharides to HMF. Furthermore, the aqueous phase was recycled and used for multiple times without significant loss of catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A (2007) Chem Rev 107:2411

    Article  CAS  Google Scholar 

  2. Shanks BH (2010) Ind Eng Chem Res 49:10212

    Article  CAS  Google Scholar 

  3. Schmidt LD, Dauenhauer PJ (2007) Nature 447:914

    Article  CAS  Google Scholar 

  4. Davis SE, Zope BN, Davis RJ (2012) Green Chem 14:143

    Article  CAS  Google Scholar 

  5. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ (2011) Catal Today 160:55

    Article  CAS  Google Scholar 

  6. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Angew Chem Int Ed 50:7083

    Article  CAS  Google Scholar 

  7. Ma J, Du Z, Xu J, Chu Q, Pang Y (2011) ChemSusChem 4:51

    Article  CAS  Google Scholar 

  8. Roman-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Nature 447:982

    Article  CAS  Google Scholar 

  9. Chidambaram M, Bell AT (2010) Green Chem 12:1253

    Article  CAS  Google Scholar 

  10. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446

    Article  CAS  Google Scholar 

  11. Chheda JN, Roman-Leshkov Y, Dumesic JA (2007) Green Chem 9:342

    Article  CAS  Google Scholar 

  12. Crisci AJ, Tucker MH, Dumesic JA, Scott SL (2010) Top Catal 53:1185

    Article  CAS  Google Scholar 

  13. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933

    Article  CAS  Google Scholar 

  14. Torres AI, Daoutidis P, Tsapatsis M (2010) Energy Environ Sci 3:1560

    Article  CAS  Google Scholar 

  15. Huang R, Qi W, Su R, He Z (2010) Chem. Comm. 46:1115

    Article  CAS  Google Scholar 

  16. Takagaki A, Ohara M, Nishimura S, Ebitani K (2009) Chem Comm 14:6276

    Article  Google Scholar 

  17. Nikolla E, Roman-Leshkov Y, Moliner M, Davis ME (2011) ACS Catalysis 1:408

    Article  CAS  Google Scholar 

  18. Nakajima K, Baba Y, Noma R, Kitano M, Kondo JN, Hayashi S, Hara M (2011) J Am Chem Soc 133:4224

    Article  CAS  Google Scholar 

  19. Yong G, Zhang Y, Ying JY (2008) Angew Chem Int Ed 47:9345

    Article  CAS  Google Scholar 

  20. Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Science 316:1597

    Article  CAS  Google Scholar 

  21. Román-Leshkov Y, Davis ME (2011) ACS Catalysis 1:1566

    Article  Google Scholar 

  22. Pagan-Torres Y, Wang T, Gallo J, Shanks B, Dumesic J (2012) ACS Catal 2:930

    Article  CAS  Google Scholar 

  23. Roman-Leshkov Y, Moliner M, Labinger JA, Davis ME (2010) Angew Chem Int Ed 49:8954

    Article  CAS  Google Scholar 

  24. Corma A, Domine ME, Valencia S (2003) J Catal 215:294

    Article  CAS  Google Scholar 

  25. Kobayashi S, Ogawa C (2006) Chem Eur J 12:5954

    Article  CAS  Google Scholar 

  26. Barrett AGM, Christopher Braddock D (1997) Chem Commun 6:613

    Google Scholar 

  27. Seri K, Inoue Y, Ishida H (2001) Bull Chem Soc Jpn 74:1145

    Article  CAS  Google Scholar 

  28. Seri K, Inoue Y, Ishida H (2000) Chem Lett 29:22

    Article  Google Scholar 

  29. Roman-Leshkov Y, Dumesic JA (2009) Top Catal 52:297

    Article  CAS  Google Scholar 

  30. Fringuelli F, Pizzo F, Vaccaro L (2001) Tetrahedron Lett 42:1131

    Article  CAS  Google Scholar 

  31. Fringuelli F, Pizzo F, Vaccaro L (2001) J Org Chem 66:4719

    Article  CAS  Google Scholar 

  32. Kobayashi S, Manabe K (2002) Clean solvents, vol 819. American Chemical Society, Washington, DC

    Google Scholar 

  33. Nagorski RW, Richard JP (2001) J Am Chem Soc 123:794

    Article  CAS  Google Scholar 

  34. Ishida H, Seri K (1996) J Mol Catal A Chem 112:L163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation under Award No. EEC-0813570. We thank Mr. Justin Glasper for his assistance in the biphasic reaction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent H. Shanks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T., Pagán-Torres, Y.J., Combs, E.J. et al. Water-Compatible Lewis Acid-Catalyzed Conversion of Carbohydrates to 5-Hydroxymethylfurfural in a Biphasic Solvent System. Top Catal 55, 657–662 (2012). https://doi.org/10.1007/s11244-012-9845-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9845-8

Keywords

Navigation