Skip to main content

Advertisement

Log in

A Comparative Density Functional Theory Study of Water Gas Shift Over PdZn(111) and NiZn(111)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

PdZn catalysts have been proposed as an alternative to Cu low temperature water gas shift (WGS) catalysts due to their similar reactivity but higher thermal stability. Unfortunately, Pd based alloys are likely to be considerably more expensive than Cu catalysts. Therefore, we explore NiZn as a potentially cheaper alternative to PdZn. Both PdZn(111) and NiZn(111) have similar potential energy surfaces for WGS as previous work on Cu(111) suggesting that they may be effective WGS catalysts. However, unlike PdZn (and Cu), the primary mechanism for WGS shifts from the carboxyl mechanism to a redox mechanism over NiZn(111) (although they are similar in magnitude).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402

    Article  CAS  Google Scholar 

  2. Farrauto R, Hwang S, Shore L, Ruettinger W, Lampert J, Giroux T, Liu Y, Ilinich O (2003) Ann Rev Mater Res 33:1

    Article  CAS  Google Scholar 

  3. Ratnasamy C, Wagner JP (2009) Catal Rev Sci Eng 51:325

    Article  CAS  Google Scholar 

  4. Schumacher N, Boisen A, Dahl S, Gokhale AA, Kandoi S, Grabow LC, Dumesic JA, Mavrikakis M, Chorkendorff I (2005) J Catal 229:265

    Article  CAS  Google Scholar 

  5. Grenoble DC, Estadt M, Ollis DF (1981) J Catal 67:90

    Article  CAS  Google Scholar 

  6. Sinfelt JH (1985) Sci Am 253:90

    Article  Google Scholar 

  7. Iwasa N, Kudo S, Takahashi H, Masuda S, Takezawa N (1993) Catal Lett 19:211

    Article  CAS  Google Scholar 

  8. Iwasa N, Masuda S, Ogawa N, Takezawa N (1995) Appl Catal A 125:145

    Article  CAS  Google Scholar 

  9. Cubeiro ML, Fierro JLG (1998) J Catal 179:150

    Article  CAS  Google Scholar 

  10. Chin YH, Dagle R, Hu JL, Dohnalkova AC, Wang Y (2002) Catal Today 77:79

    Article  CAS  Google Scholar 

  11. Neyman KM, Lim KH, Chen ZX, Moskaleva LV, Bayer A, Reindl A, Borgmann D, Denecke R, Steinruck HP, Rosch N (2007) Phys Chem Chem Phys 9:3470

    Article  CAS  Google Scholar 

  12. Lim KH, Chen ZX, Neyman KM, Rosch N (2006) J Phys Chem B 110:14890

    Article  CAS  Google Scholar 

  13. Chen ZX, Neyman KM, Gordienko AB, Rosch N (2003) Phys Rev B 68:075417

    Article  Google Scholar 

  14. Chen ZX, Lim KH, Neyman KM, Rosch N (2004) Phys Chem Chem Phys 6:4499

    Article  CAS  Google Scholar 

  15. Neyman KM, Sahnoun R, Inntam C, Hengrasmee S, Rosch N (2004) J Phys Chem B 108:5424

    Article  CAS  Google Scholar 

  16. Chen ZX, Neyman KM, Rosch N (2004) Surf Sci 548:291

    Article  CAS  Google Scholar 

  17. Chen ZX, Neyman KM, Lim KH, Rosch N (2004) Langmuir 20:8068

    Article  CAS  Google Scholar 

  18. Chen ZX, Lim KH, Neyman KM, Rosch N (2005) J Phys Chem B 109:4568

    Article  CAS  Google Scholar 

  19. Bollmann L, Ratts JL, Joshi AM, Williams WD, Pazmino J, Joshi YV, Miller JT, Kropf AJ, Delgass WN, Ribeiro FH (2008) J Catal 257:43

    Article  CAS  Google Scholar 

  20. Dagle RA, Platon A, Palo DR, Datye AK, Vohs JM, Wang Y (2008) Appl Catal A 342:63

    Article  CAS  Google Scholar 

  21. Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Norskov JK (2008) Science 320:1320

    Article  CAS  Google Scholar 

  22. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Nat Chem 1:37

    Article  CAS  Google Scholar 

  23. Rhodes C, Hutchings GJ, Ward AM (1995) Catal Today 23:43

    Article  CAS  Google Scholar 

  24. Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) J Phys Chem C 112:4608

    Article  CAS  Google Scholar 

  25. Liu P, Rodriguez JA (2007) J Chem Phys 126:164705

    Article  Google Scholar 

  26. Chen Y, Cheng J, Hu P, Wang HF (2008) Surf Sci 602:2828

    Article  CAS  Google Scholar 

  27. Senanayake SD, Stacchiola D, Liu P, Mullins CB, Hrbek J, Rodriguez JA (2009) J Phys Chem C 113:19536

    Article  CAS  Google Scholar 

  28. Burch R (2006) Phys Chem Chem Phys 8:5483

    Article  CAS  Google Scholar 

  29. Meunier FC, Tibiletti D, Goguet A, Shekhtman S, Hardacre C, Burch R (2007) Catal Today 126:143

    Article  CAS  Google Scholar 

  30. Tibiletti D, Meunier FC, Goguet A, Reid D, Burch R, Boaro M, Vicario M, Trovarelli A (2006) J Catal 244:183

    Article  CAS  Google Scholar 

  31. Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis M, Dumesic JA (2011) J Catal 281:1

    Article  CAS  Google Scholar 

  32. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  33. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  34. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  35. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  36. Nash P, Pan YY (1987) Bull Alloy Phase Diagr 8:422

    CAS  Google Scholar 

  37. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  38. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  39. Huang YC, Chen ZX (2011) J Phys Chem C 115:18752

    CAS  Google Scholar 

  40. Feibelman PJ (2002) Science 295:99

    Article  CAS  Google Scholar 

  41. Meunier FC, Goguet A, Hardacre C, Burch R, Thompsett D (2007) J Catal 252:18

    Article  CAS  Google Scholar 

  42. Meunier FC, Reid D, Goguet A, Shekhtman S, Hardacre C, Burch R, Deng W, Flytzani-Stephanopoulos M (2007) J Catal 247:277

    Article  CAS  Google Scholar 

  43. Stegelmann C, Andreasen A, Campbell CT (2009) J Am Chem Soc 131:8077

    Article  CAS  Google Scholar 

  44. Campbell CT (2001) J Catal 204:520

    Article  CAS  Google Scholar 

  45. Stegelmann C, Schiodt NC, Campbell CT, Stoltze P (2004) J Catal 221:630

    Article  CAS  Google Scholar 

  46. Phatak AA, Delgass WN, Ribeiro FH, Schneider WF (2009) J Phys Chem C 113:7269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding for this work from the National Science Foundation (CBET Grant # 0747646). We gratefully acknowledge NCSA for allocation grant TG-CHE080020N which was used to perform most of the calculations described herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, H., Gomez, C. & Meyer, R.J. A Comparative Density Functional Theory Study of Water Gas Shift Over PdZn(111) and NiZn(111). Top Catal 55, 313–321 (2012). https://doi.org/10.1007/s11244-012-9799-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9799-x

Keywords

Navigation