Skip to main content
Log in

Cinchona Alkaloids Tethered on Porous Silica as Enantioselective Heterogeneous Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Cinchonidine, a naturally occurring cinchona alkaloid, was tethered to a high-surface-area silica substrate in order to create a new solid chiral catalyst. Two synthetic routes were explored for this grafting, relying on the use of an intermediate linker and so-called “click” chemistry. Both routes proved viable, but the procedure where cinchonidine is first derivatized with 3-isocyanatopropyltriethoxysilane (ICPTEOS) at the alcohol position and the resulting product then anchored to the silica surface was deemed the most efficient. Bonding to the surface occurs via the formation of Si–O–Si bonds, on average two out of the three possible per cinchonidine, and takes place preferentially at silica surface sites with two geminal hydroxyl groups on the same silicon atom. Approximately 10% of the available OH surface groups are derivatized in this procedure. The resulting catalyst was successfully tested for the addition of aromatic thiols to unsaturated ketones, a reaction promoted by amines (the tertiary quinuclidine nitrogen atom in the case of cinchonidine). The activity of the supported cinchonidine proved comparable to that of the free molecule, but tethering does lead to a significant loss in enantioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kaufman TS, Rúveda EA (2005) Angew Chem Int Ed 44:854

    Article  CAS  Google Scholar 

  2. Ashley E, McGready R, Proux S, Nosten F (2006) Travel Med Infect Dis 4:159

    Article  Google Scholar 

  3. White NJ (2007) Lancet Infect Dis 7:549

    Article  CAS  Google Scholar 

  4. Meyer CG, Marks F, Hay J (2004) Trop Med Int Health 9:1239

    Article  Google Scholar 

  5. Lämmerhofer M, Lindner W (2008) Adv Chromatog 46:1

    Article  Google Scholar 

  6. Wynberg H (1986) Top Stereochem 16:87

    Article  CAS  Google Scholar 

  7. Kacprzak K Gawroński J (2001) Synthesis 961

  8. Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863

    Article  CAS  Google Scholar 

  9. Ma Z, Zaera F (2009) Chiral modification of catalytic surfaces. In: Ozkan US (ed) Design of heterogeneous catalysis: new approaches based on synthesis, characterization, and modelling. Wiley-VCH, Weinheim, pp 113–140

  10. Notestein JM, Katz A (2006) Chem Eur J 12:3954

    Article  CAS  Google Scholar 

  11. Copéret C, Basset J-M (2007) Adv Synth Catal 349:78

    Article  Google Scholar 

  12. Corma A, Garcia H (2006) Adv Synth Catal 348:1391

    Article  CAS  Google Scholar 

  13. Margelefsky EL, Zeidan RK, Davis ME (2008) Chem Soc Rev 37:1118

    Article  CAS  Google Scholar 

  14. Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004

    Article  CAS  Google Scholar 

  15. Kim G-J, Shin J-H (1999) Tetrahedron Lett 40:6827

    Article  CAS  Google Scholar 

  16. Choong ES (2005) Annu Rep Prog Chem C 101:143

    Article  Google Scholar 

  17. Hiemstra H, Wynberg H (1981) J Am Chem Soc 103:417

    Article  CAS  Google Scholar 

  18. Tian S-K, Chen Y, Hang J, Tang L, McDaid P, Deng L (2004) Acc Chem Res 37:621

    Article  CAS  Google Scholar 

  19. Hellriegel C, Skogsberg U, Albert K, Lämmerhofer M, Maier NM, Lindner W (2004) J Am Chem Soc 126:3809

    Article  CAS  Google Scholar 

  20. Kacprzak KM, Maier NM, Lindner W (2006) Tetrahedron Lett 47:8721

    Article  CAS  Google Scholar 

  21. Iglesias-Hernández M, Sánchez-Alonso F (2000). In: Corma A, Melo FV, Mendioroz S, José Luis GF (eds) Studies in surface science and catalysis, vol 130. Elsevier, Amsterdam, pp 3393–3398

  22. Corma A, Iborra S, Rodríguez I, Iglesias M, Sánchez F (2002) Catal Lett 82:237

    Article  CAS  Google Scholar 

  23. Tertykh VA, Yanishpolskii VV, Bereza LV, Pesek JJ, Matyska M (2000) J Therm Anal Calorim 62:539

    Article  CAS  Google Scholar 

  24. Lindholm A, Maki-Arvela P, Toukoniitty E, Pakkanen TA, Hirvi JT, Salmi T, Murzin DY, Sjoholm R, Leino R (2002) J Chem Soc Perkin Trans 1:2605

    Article  Google Scholar 

  25. Busygin I, Toukoniitty E, Sillanpää R Murzin Leino R (2005) Eur J Org Chem 2811

  26. Reyes P, Campos C, Fierro JLG (2007) J Chil Chem Soc 52:1249

    Article  CAS  Google Scholar 

  27. Prideaux EBR, Winfield FT (1930) Analyst 55:561

    Article  CAS  Google Scholar 

  28. Socrates G (1994) Infrared characteristic group frequencies: tables and charts. Wiley, Chichester

    Google Scholar 

  29. Chu W, LeBlanc RJ, Williams CT, Kubota J, Zaera F (2003) J Phys Chem B 107:14365

    Article  CAS  Google Scholar 

  30. Khalil AM (1981) Surf Technol 14:383

    Article  CAS  Google Scholar 

  31. Moreland CG, Philip A, Carroll FI (1974) J Org Chem 39:2413

    Article  CAS  Google Scholar 

  32. Caravajal GS, Leyden DE, Quinting GR, Maciel GE (1988) Anal Chem 60:1776

    Article  CAS  Google Scholar 

  33. Krupczyńska K, Buszewski B, Jandera P (2004) Anal Chem 76(13):226A–234A

    Google Scholar 

  34. Lai J, Ma Z, Mink L, Mueller LJ, Zaera F (2009) J Phys Chem B 113:11696

    Article  CAS  Google Scholar 

  35. Zaera F (2009) Acc Chem Res 42:1152

    Article  CAS  Google Scholar 

  36. Zaera F (2008) J Phys Chem C 112:16196

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funds for this research were provided by a grant from the US Department of Energy. We also thank Dr. Dan Borchardt and the UCR Analytical Chemistry Instrumentation Facility (ACIF) for help with the acquisition of the solid-state NMR data. The NMR spectrometer used for those experiments was purchased with funds from grants from the US National Science Foundation (NSF CHE-0541848) and the US National Institute of Health (NIH S10RR023677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, J., Lee, I. & Zaera, F. Cinchona Alkaloids Tethered on Porous Silica as Enantioselective Heterogeneous Catalysts. Top Catal 54, 1340–1347 (2011). https://doi.org/10.1007/s11244-011-9760-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9760-4

Keywords

Navigation