Skip to main content
Log in

Enantiospecific Adsorption of (R)-3-Methylcyclohexanone on Naturally Chiral Surfaces Vicinal to Cu(110)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

(R)-3-methylcyclohexanone (R-3MCHO) has been shown to adsorb enantiospecifically on naturally chiral Cu surfaces vicinal to the Cu(110) plane. Adsorption of R-3MCHO on seven Cu single crystal surfaces vicinal to (110) was studied using temperature programmed desorption. These surfaces include Cu(110), Cu(771), Cu(430), Cu(13,9,1)R&S and Cu(651)R&S. The Cu(13,9,1)R&S and Cu(651)R&S surfaces are naturally chiral surfaces with terrace-step-kink structures. Enantioselective adsorption of R-3MCHO takes place on the chiral kink sites of these surfaces. Three R-3MCHO desorption features were resolved in the TPD spectra on Cu(13,9,1)R&S and Cu(651)R&S surfaces. Based upon comparisons between these and other Cu single crystal surfaces, they were assigned to desorption of R-3MCHO from flat terrace, close-packed step and kink sites. The desorption of R-3MCHO from the row and trough structure of the Cu(110) surface resembled desorption from a step structure rather than from a flat Cu(111) terrace. R-3MCHO desorbs enantiospecifically from the Cu(13,9,1)R&S and Cu(651)R&S surfaces. The peaks associated with R-3MCHO desorbing from the R- and S-chiral kink sites on Cu(13,9,1)R&S differed in temperature by 2.4 ± 0.8 K. This corresponds to an enantiospecific difference in the desorption energies of 0.7 ± 0.2 kJ/mol, with a preference for R-3MCHO adsorption at the R-kinks. In contrast, R-3MCHO has a desorption energy from the S-kinks on the Cu(651)S surface that is 0.7 ± 0.2 kJ/mol higher than from the R-kinks on the Cu(651)R surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polastro E (1995) Commercial outlook for chirality. Quo vadis? In: Jannes G, Dubois V (eds) Chiral reactions in heterogeneous catalysis. Plenum Publications, New York, p 5

    Chapter  Google Scholar 

  2. Stinson SC (2001) Chiral pharmaceuticals. Chem Eng News 78:55–79

    Article  Google Scholar 

  3. Stinson SC (2000) Chiral drugs. Chem Eng News 78(43):55–78

    Article  Google Scholar 

  4. Zaera F (2008) Chiral modification of solid surfaces: a molecular view. J Phys Chem C 112(42):16196–16203

    Article  CAS  Google Scholar 

  5. Baiker A (1997) Progress in asymmetric heterogeneous catalysis: design of novel chirally modified platinum metal catalysts. J Mol Catal A 115(3):473–493

    Article  CAS  Google Scholar 

  6. Izumi Y (1983) Modified Raney-nickel (Mrni) catalyst—heterogeneous enantio-differentiating (asymmetric) catalyst. Adv Catal 32:215–271

    Article  CAS  Google Scholar 

  7. Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107(11):4863–4890

    Article  CAS  Google Scholar 

  8. McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12(10):2483–2487

    Article  CAS  Google Scholar 

  9. Sholl DS, Asthagiri A, Power TD (2001) Naturally chiral metal surfaces as enantiospecific adsorbents. J Phys Chem B 105(21):4771–4782

    Article  CAS  Google Scholar 

  10. van Hove MA, Somorjai GA (1980) New microfacet notation for high-miller-index surfaces of cubic materials with terrace, step and kink structures. Surf Sci 92(2–3):489–518

    Google Scholar 

  11. Horvath J, Kamakoti P, Koritnik A, Sholl DS, Gellman AJ (2004) Enantioselective separation on a naturally chiral surface. J Am Chem Soc 126(45):14988–14994

    Article  CAS  Google Scholar 

  12. Horvath JD, Baker L, Gellman AJ (2008) Enantiospecific orientation of R-3-methylcyclohexanone on the chiral Cu(643)(R/S) surfaces. J Phys Chem C 112(20):7637–7643

    Article  CAS  Google Scholar 

  13. Horvath JD, Gellman AJ (2002) Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J Am Chem Soc 124(10):2384–2392

    Article  CAS  Google Scholar 

  14. Horvath JD, Gellman AJ (2003) Naturally chiral surfaces. Top Catal 25(1–4):9–15

    Article  CAS  Google Scholar 

  15. Ahmadi A, Attard G, Feliu J, Rodes A (1999) Surface reactivity at “chiral” platinum surfaces. Langmuir 15(7):2420–2424

    Article  CAS  Google Scholar 

  16. Attard GA, Ahmadi A, Jenkins DJ, Hazzazi OA, Wells PB, Griffin KG, Johnston P, Gillies JE (2003) The characterisation of supported platinum nanoparticles on carbon used for enantioselective hydrogenation: a combined electrochemical—STM approach. ChemPhysChem 4(2):123–130

    Article  CAS  Google Scholar 

  17. Attard GA, Harris C, Herrero E, Feliu J (2002) The influence of anions and kink structure on the enantioselective electro-oxidation of glucose. Faraday Discuss 121:253–266

    Article  CAS  Google Scholar 

  18. Bhatia B, Sholl DS (2005) Enantiospecific chemisorption of small molecules on intrinsically chiral Cu surfaces. Angew Chem Int Ed 44(47):7761–7764

    Article  CAS  Google Scholar 

  19. Gellman AJ, Horvath JD, Buelow MT (2001) Chiral single crystal surface chemistry. J Mol Catal A 167(1–2):3–11

    CAS  Google Scholar 

  20. Greber T, Sljivancanin Z, Schillinger R, Wider J, Hammer B (2006) Chiral recognition of organic molecules by atomic kinks on surfaces. Phys Rev Lett 96(5):056103

    Article  CAS  Google Scholar 

  21. Horvath J, Kamakoti P, Koritnik A, Sholl DS, Gellman AJ (2004) Enantioselective separation on a naturally chiral surface. J Am Chem Soc 126(45):14988–14994

    Article  CAS  Google Scholar 

  22. Horvath JD, Gellman AJ (2001) Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J Am Chem Soc 123(32):7953–7954

    Article  CAS  Google Scholar 

  23. Horvath JD, Gellman AJ, Sholl DS, Power TD (2000) Enantiospecific properties of chiral single crystal surfaces. In: Hicks JM (ed) Chirality: physical chemistry, San Francisco, 2002. ACS Publications, San Francisco, pp 269–282

  24. Huang Y, Gellman AJ (2008) Enantiospecific adsorption of (R)-3-methylcyclohexanone on naturally chiral Cu(531)(R&S) surfaces. Catal Lett 125(3–4):177–182

    Article  CAS  Google Scholar 

  25. Power TD, Sholl DS (1999) Enantiospecific adsorption of chiral hydrocarbons on naturally chiral Pt and Cu surfaces. J Vac Sci Technol A 17(4):1700–1704

    Article  CAS  Google Scholar 

  26. Rampulla DM, Francis AJ, Knight KS, Gellman AJ (2006) Enantioselective surface chemistry of R-2-bromobutane on Cu(643)(R&S) and Cu(531)(R&S). J Phys Chem B 110(21):10411–10420

    Article  CAS  Google Scholar 

  27. Schunack M, Laegsgaard E, Stensgaard I, Johannsen I, Besenbacher F (2001) A chiral metal surface. Angew Chem Int Ed 40(14):2623–2626

    Article  CAS  Google Scholar 

  28. Sholl DS (1998) Adsorption of chiral hydrocarbons on chiral platinum surfaces. Langmuir 14(4):862–867

    Article  CAS  Google Scholar 

  29. Sholl DS, Gellman AJ (2009) Developing chiral surfaces for enantioselective chemical processing. AIChE J 55(10):2484–2490

    Article  CAS  Google Scholar 

  30. Sljivancanin Z, Gothelf KV, Hammer B (2002) Density functional theory study of enantiospecific adsorption at chiral surfaces. J Am Chem Soc 124(49):14789–14794

    Article  CAS  Google Scholar 

  31. Zhao XY, Perry SS (2004) Ordered adsorption of ketones on Cu(643) revealed by scanning tunneling microscopy. J Mol Catal A 216(2):257–262

    Article  CAS  Google Scholar 

  32. Attard GA (2001) Electrochemical studies of enantioselectivity at chiral metal surfaces. J Phys Chem B 105(16):3158–3167

    Article  CAS  Google Scholar 

  33. Jenkins SJ, Pratt SJ (2007) Beyond the surface atlas: a roadmap and gazetteer for surface symmetry and structure. Surf Sci Rep 62(10):373–429

    Article  CAS  Google Scholar 

  34. Zhao XY, Perry SS, Horvath JD, Gellman AJ (2004) Adsorbate induced kink formation in straight step edges on Cu(533) and Cu(221). Surf Sci 563(1–3):217–224

    Article  CAS  Google Scholar 

  35. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis, 2nd edn. Wiley, New York

    Google Scholar 

  36. Baber AE, Gellman AJ, Sholl DS, Sykes ECH (2008) The real structure of naturally chiral Cu{643}. J Phys Chem C 112(30):11086–11089

    Article  CAS  Google Scholar 

  37. Baker L, Holsclaw B, Baber AE, Tierney HL, Sykes ECH, Gellman AJ (2010) Adsorption site distributions on Cu(111), Cu(221), and Cu(643) as determined by Xe adsorption. J Phys Chem C 114(43):18566–18575

    Article  CAS  Google Scholar 

  38. Clegg ML, Driver SM, Blanco-Rey M, King DA (2010) Atomic roughness of an intrinsically chiral surface orientation of an fcc metal: Cu{531}. J Phys Chem C 114(9):4114–4117

    Article  CAS  Google Scholar 

  39. Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203–211

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge support from the US DOE through grant number DE-FG02-03ER15472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Gellman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Gellman, A.J. Enantiospecific Adsorption of (R)-3-Methylcyclohexanone on Naturally Chiral Surfaces Vicinal to Cu(110). Top Catal 54, 1403–1413 (2011). https://doi.org/10.1007/s11244-011-9756-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9756-0

Keywords

Navigation