Skip to main content
Log in

Determination of Polycarbonyl Species on Nickel-Containing Catalysts by Adsorption of CO Isotopic Mixtures

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The possibilities to identify polycarbonyl species using different CO isotopic mixtures (12C16O + 13C16O and 12C16O + 13C18O) are regarded. The examples concern two nickel-containing catalysts, Ni–ZSM-5 and Ni/SiO2. Ni+ ions, present in Ni–ZSM-5 reduced by CO, can coordinate up to three CO molecules each. Ni+(CO)2 dicarbonyl structures are well established by both, 12C16O + 13C16O and 12C16O + 13C18O isotopic mixtures. However, the 12C16O + 13C18O mixture is advantageous in the determination of tricarbonyl structures. This is due to the much higher 12C16O → 13C18O isotopic shift (about 100 cm−1) as compared to the 12C16O → 13C16O shift (ca. 50 cm−1) which allows a better resolution of the different carbonyl bands. The use of 12C16O + 13C18O mixtures also permits assignment of the bands due to polycarbonyl structures when CO is adsorbed on a reduced Ni/SiO2 catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gates BC, Katzer JR, Schuit GCA (1979) Chemistry of catalytic processes. McGraw-Hill, New York

    Google Scholar 

  2. Knözinger H, Kochloefl K (2002) Heterogeneous catalysis and solid catalysts. In Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

  3. Andreev A, Idakiev V, Kostov K, Gabrovska M (1995) Catal Lett 31:245

    Article  CAS  Google Scholar 

  4. Stoyanova M, Konova P, Nikolov P, Naydenov A, Christoskova St, Mehandjiev D (2006) Chem Eng J 122:41

    Article  CAS  Google Scholar 

  5. Labertya C, Marquez-Alvarezb C, Droueta C, Alphonsea P, Mirodatos C (2001) J Catal 198:266

    Article  Google Scholar 

  6. Sohn JR, Park WC (2002) Appl Catal A 230:11

    Article  CAS  Google Scholar 

  7. Zhao Z, Yang X, Wu Y (1996) Appl Catal B 8:281

    Article  CAS  Google Scholar 

  8. Chen L, Horiuchi T, Mori T (1999) Catal Lett 60:237

    Article  CAS  Google Scholar 

  9. Tang J, Zhang T, Ma L, Li L, Zhao J, Zheng M, Lin L (2001) Catal Lett 73:193

    Article  CAS  Google Scholar 

  10. Yumoto M, Kukes SG, Klein MT, Gates BC (1996) Ind Eng Chem Res 35:3203

    Article  CAS  Google Scholar 

  11. Davydov AA (1990) In: Rochester CH (ed) Infrared spectroscopy of adsorbed species on the surface of transition metal oxides. Wiley, Chichester

    Google Scholar 

  12. Hadjiivanov K, Vayssilov G (2002) Adv Catal 47:307

    Article  CAS  Google Scholar 

  13. Knözinger H (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  14. Ryczkowski J (2001) Catal Today 68:63

    Article  Google Scholar 

  15. Hadjiivanov K, Ivanova E, Klissurski D (2001) Catal Today 70:75

    Article  Google Scholar 

  16. Hadjiivanov K, Knözinger H (2009) Surf Sci 603:1629

    Article  CAS  Google Scholar 

  17. Burattin P, Che M, Louis C (1997) J Phys Chem B 101:7060

    Article  CAS  Google Scholar 

  18. Hadjiivanov K, Mihaylov M, Klissurski D, Stefanov P, Abadjieva N, Vassileva E, Mintchev L (1999) J Catal 185:314

    Article  CAS  Google Scholar 

  19. Platero EE, Scarano D, Spoto G, Zecchina A (1985) Faraday Discuss Chem Soc 80:183

    Article  Google Scholar 

  20. Hadjiivanov K, Knözinger H, Mihaylov M (2002) J Phys Chem B 106:2618

    Article  CAS  Google Scholar 

  21. Penkova A, Dzwigaj S, Kefirov R, Hadjiivanov K, Che M (2007) J Phys Chem C 111:8623

    Article  CAS  Google Scholar 

  22. Hierl R, Knözinger H (1981) J Catal 69:475

    Article  CAS  Google Scholar 

  23. Duchet J-C, Lavalley J-C, Housni S, Ouafi D, Bachelier J, Lakhdar M, Mennour A, Cornet D (1988) Catal Today 4:71

    Article  CAS  Google Scholar 

  24. Anderson JA, Daza L, Fierro JLG, Rodrigo MT (1993) J Chem Soc Faraday Trans 89:3651

    Article  CAS  Google Scholar 

  25. Borello E, Cimino A, Ghiotti G, Lo Jacono M, Schiavello M, Zecchina A (1971) Discuss Faraday Soc 52:149

    Article  Google Scholar 

  26. Busca G, Lorenzelli V, Sanchez-Escribano V (1992) Chem Mater 4:595

    Article  CAS  Google Scholar 

  27. Scarano D, Spoto G, Bordiga S, Coluccia S, Zecchina A (1992) J Chem Soc Faraday Trans 88:291

    Article  CAS  Google Scholar 

  28. Bonneviot L, Cai FX, Che M, Kermarec M, Legendre O, Lepetit C, Olivier D (1987) J Phys Chem 91:5912

    Article  CAS  Google Scholar 

  29. Kermarec M, Olivier D, Richard M, Che M, Bozon-Verduraz F (1982) J Phys Chem 86:2818

    Article  CAS  Google Scholar 

  30. Kasai PH, Bishop RJ Jr, McLeod D Jr (1978) J Phys Chem 82:279

    Article  CAS  Google Scholar 

  31. Serykh AI, Amiridis MD (2007) J Phys Chem C 111:17020

    Article  CAS  Google Scholar 

  32. Sault AG, Peden CHF, Boespflug EP (1994) J Phys Chem 98:1652

    Article  CAS  Google Scholar 

  33. Mihaylov M, Hadjiivanov K, Knözinger H (2001) Catal Lett 76:59

    Article  CAS  Google Scholar 

  34. Medvedev VK, Børner R, Kruse N (1998) Surf Sci 401:L371

    Article  CAS  Google Scholar 

  35. Agnelly M, Kolb M, Mirodatos C (1994) J Catal 148:9

    Article  Google Scholar 

  36. Kefirov R, Mihaylov M, Che M, Hadjiivanov K (2008) In: Hadjiivanov K, Valtchev V, Mintova S, Vayssilov G (eds) Advanced Micro- and Mesoporous Materials. Heron Press, Sofia, p 304

    Google Scholar 

  37. Sheppard N, Nguyen TT (1978) Adv Infrared Raman Spectrosc 5:67

    CAS  Google Scholar 

  38. Blackmond DG, Ko EI (1985) J Catal 96:210

    Article  CAS  Google Scholar 

  39. Zaki MI (1995) In: Absi-Halabi M et al (eds) Catalysts in petroleum refining and petrochemical industries. Elsevier, Amsterdam, p 569

    Google Scholar 

  40. Primet M, Dalmon JA, Martin GA (1977) J Catal 46:25

    Article  CAS  Google Scholar 

  41. Nakamoto K (1966) Infrared spectra of inorganic and coordination compounds. Mir, Moscow

    Google Scholar 

  42. Martra G, Swaan HM, Mirodatos C, Kermarec M, Louis C (1997) Stud Surf Sci Catal 111:617

    Article  CAS  Google Scholar 

  43. Mohana Rao K, Spoto G, Zecchina A (1989) Langmuir 5:319

    Article  Google Scholar 

  44. Hobert H, Marx R, Weber I, Reschetilovski WP, Wendlandt K-H (1986) Z Anorg Allg Chem 539:211

    Article  CAS  Google Scholar 

  45. Wendland K-P, Bremer H, Vogt F, Reshitlovski WP, Mörke W, Hobert H, Weber M, Becker K (1987) Appl Catal 31:65

    Article  Google Scholar 

  46. Hadjiivanov K (2009) In: Valtchev V, Mintova S, Tsapatis M (eds) Ordered porous solids—recent advances and prospects. Elsevier, Amsterdam, p 263

    Chapter  Google Scholar 

  47. Ivanova E, Mihaylov M, Thibault-Starzyk F, Daturi M, Hadjiivanov K (2005) J Catal 236:168

    Article  CAS  Google Scholar 

  48. Miessner H, Richter K (1999) J Mol Catal A 146:107

    Article  CAS  Google Scholar 

  49. Miessner H, Burkhardt I, Gutschick D, Zecchina A, Morterra C, Spoto G (1989) J Chem Soc Faraday Trans 1 85:2113

    Article  CAS  Google Scholar 

  50. Kohler SD, Ekerdt JG (1994) J Phys Chem 98:1276

    Article  CAS  Google Scholar 

  51. Ivanova E, Mihaylov M, Thibault-Starzyk F, Daturi M, Hadjiivanov K (2005) J Catal 236:168

    Article  CAS  Google Scholar 

  52. Mihaylov M, Ivanova E, Thibault-Starzyk F, Daturi M, Dimitrov L, Hadjiivanov K (2006) J Phys Chem B 110:10383

    Article  CAS  Google Scholar 

  53. Mihaylov M, Chakarova K, Hadjiivanov K, Marie O, Daturi M (2005) Langmuir 21:11821

    Article  CAS  Google Scholar 

  54. Chakarova K, Mihaylov M, Hadjiivanov K (2005) Catal Commun 6:466

    Article  CAS  Google Scholar 

  55. Hadjiivanov K, Knözinger H (1998) J Phys Chem B 102:10936

    Article  CAS  Google Scholar 

  56. Hadjiivanov K, Tsyntsarski B, Venkov Tz, Daturi M, Saussey J, Lavalley J-C (2003) Phys Chem Chem Phys 5:243

    Article  CAS  Google Scholar 

  57. Braterman PS (1975) Metal carbonyl spectra. Academic Press, London

    Google Scholar 

  58. Mori T, Itadani A, Tabuchi E, Sogo Y, Kumashiro R, Nagao M, Kuroda Y (2008) Phys Chem Chem Phys 10:1203

    Article  CAS  Google Scholar 

  59. Borovkov VYu, Kolesnikov SP, Koval’chuk VI, D’Itri JL (2005) J Phys Chem B 109:19772

    Article  CAS  Google Scholar 

  60. Wovchko EA, Yates JT Jr (1998) J Am Chem Soc 120:7544

    Article  CAS  Google Scholar 

  61. Pinchas S, Laulicht L (1971) Infrared spectra of labelled compounds. Academic Press, London/New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Bulgarian National Scientific Foundation (Grant 02-290/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hadjiivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaylov, M., Lagunov, O., Ivanova, E. et al. Determination of Polycarbonyl Species on Nickel-Containing Catalysts by Adsorption of CO Isotopic Mixtures. Top Catal 54, 308–317 (2011). https://doi.org/10.1007/s11244-011-9661-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9661-6

Keywords

Navigation