Skip to main content
Log in

Hydrogen Evolution and Hydrogen Oxidation on Palladium Bismuth Alloys

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Thin film alloys of PdBi have been synthesised using a high throughput physical vapour deposition method to produce compositional gradients of PdBi alloys. XPS indicates that for the non-equilibrated thin films, the surface composition is the same as the bulk, and core level shifts reflect the inter-metallic interaction between the component metals. Hydrogen absorption is hindered in the PdBi alloys, and at a composition of 70 at.% bismuth, the αBi2Pd bulk alloy phase is identified in XRD. This phase exhibits a maximum in the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) electrocatalytic activity. The increased activity of the alloy can be understood in terms of the Pd d-band density of states, and a concomitant increase in the binding energy of hydrogen. There is a strong correlation between the HER and HOR activity as a function of composition across the complete range of alloys. The potential of using the αBi2Pd bulk inter-metallic phase at the anode of PEM fuel cells is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wee J-H (2007) Renew Sustain Energy Rev 11:1720

    Article  CAS  Google Scholar 

  2. Serov A, Kwak C (2009) Appl Catal B 90:313

    Article  CAS  Google Scholar 

  3. Sinfelt JH (1983) Bimetallic catalysts: discoveries, concepts, and applications. Wiley, New York

    Google Scholar 

  4. Ruban AV, Skriver HL, Norskov JK (1999) Phys Rev B 59:15990

    Article  Google Scholar 

  5. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK (2006) Nat Mater 5:909

    Article  CAS  Google Scholar 

  6. Antolini E (2009) Energy Environ Sci 2:915

    Article  CAS  Google Scholar 

  7. Grigoriev SA, Lyutikova EK, Martemianov S, Fateev VN (2007) Int J Hydrogen Energy 32:4438

    Article  CAS  Google Scholar 

  8. Grigoriev SA, Millet P, Fateev VN (2008) J Power Sources 177:281

    CAS  Google Scholar 

  9. Macia MD, Herrero E, Feliu JM (2003) J Electroanal Chem 554:25

    Article  Google Scholar 

  10. Tripkovic AV, Popovic KD, Stevanovic RM, Socha R, Kowal A (2006) Electrochem Commun 8:1492

    Article  CAS  Google Scholar 

  11. Hayden BE, Murray AJ, Parsons R, Pegg DJ (1996) J Electroanal Chem 409:51

    Article  Google Scholar 

  12. Hayden BE (1997) Catal Today 38:473

    Article  CAS  Google Scholar 

  13. Schmidt TJ, Stamenkovic V, Attard GA, Markovic NM, Ross PN (2001) Langmuir 17:7613

    Article  CAS  Google Scholar 

  14. Wenkin M, Ruiz P, Delmon B, Devillers M (2002) J Mol Catal A Chem 180:141

    Article  CAS  Google Scholar 

  15. Miyake T, Hattori A, Hanaya M, Tokumaru S, Hamaji H, Okada T (2000) Top Catal 13:243

    Article  CAS  Google Scholar 

  16. Anderson JA, Mellor J, Wells RPK (2009) J Catal 261:208

    Article  CAS  Google Scholar 

  17. Alardin F, Ruiz P, Delmon B, Devillers M (2001) Appl Catal A 215:125

    Article  CAS  Google Scholar 

  18. Karski S, Witonska I (2003) J Mol Catal A Chem 191:87

    Article  CAS  Google Scholar 

  19. Guerin S, Hayden BE (2006) J Comb Chem 8:66

    Article  CAS  Google Scholar 

  20. Guerin S, Hayden BE, Lee CE, Mormiche C, Russell AE (2006) J Phys Chem B 110:14355

    Article  CAS  Google Scholar 

  21. Guerin S, Hayden BE, Lee CE, Mormiche C, Owen JR, Russell AE, Theobald B, Thompsett D (2004) J Comb Chem 6:149

    Article  CAS  Google Scholar 

  22. Duan XK, Yang JY, Zhu W, Fan XA, Xiao CJ (2007) Mater Lett 61:4341

    Article  CAS  Google Scholar 

  23. Chu SZ, Kawamura H, Mori M (2007) Electrochim Acta 53:92

    Article  CAS  Google Scholar 

  24. International Centre for Diffraction Data PdBi2 PDF Card #892027, JCPDS-ICDD, June 2003

  25. ASM International (1992) ASM handbook. Alloy phase diagrams, vol 3

  26. Briggs D, Seah MP (1983) Practical surface analysis. Wiley, New York

    Google Scholar 

  27. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie

    Google Scholar 

  28. Egelhoff WF Jr (1986) Surf Sci Rep 6:253

    Article  CAS  Google Scholar 

  29. Bartlett PN, Gollas B, Guerin S, Marwan J (2002) Phys Chem Chem Phys 4:3835

    Article  CAS  Google Scholar 

  30. Hara M, Linke U, Wandlowski T (2007) Electrochim Acta 52:5733

    Article  CAS  Google Scholar 

  31. Ruban A, Hammer B, Stoltze P, Skriver HL, Norskov JK (1997) J Mol Catal A Chem 115:421

    Article  CAS  Google Scholar 

  32. Christoffersen E, Liu P, Ruban A, Skriver HL, Norskov JK (2001) J Catal 199:123

    Article  CAS  Google Scholar 

  33. Pflugi A, Indlekofer G, Oelhafen P (1990) J Non-Cryst Solids 117:336

    Article  Google Scholar 

  34. Xu R, Degroot RA, Vanderlugt W (1992) J Phys Condens Matter 4:2389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Union funded project, FCANODE NMP3-CT-2007-032175. FAA acknowledges the government of Saudi Arabia for a PhD sponsorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian E. Hayden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Odail, F.A., Anastasopoulos, A. & Hayden, B.E. Hydrogen Evolution and Hydrogen Oxidation on Palladium Bismuth Alloys. Top Catal 54, 77–82 (2011). https://doi.org/10.1007/s11244-011-9650-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9650-9

Keywords

Navigation