Skip to main content
Log in

Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The catalytic partial oxidation of methane (CPO) over flame-made 2.5%Rh–2.5%Pt/Al2O3 and 2.5%Rh/Al2O3 in 6%CH4/3%O2/He shows the potential of in situ studies using miniaturized fixed-bed reactors, the importance of spatially resolved studies and its combination with infrared thermography and on-line mass spectrometry. This experimental strategy allowed collecting data on the structure of the noble metal (oxidation state) and the temperature along the catalyst bed. The reaction was investigated in a fixed-bed quartz microreactor (1–1.5 mm diameter) following the catalytic performance by on-line gas mass spectrometry (MS). Above the ignition temperature of the catalytic partial oxidation of methane (310–330 °C), a zone with oxidized noble metals was observed in the inlet region of the catalyst bed, accompanied by a characteristic hot spot (over-temperature up to 150 °C), while reduced noble metal species became dominant towards the outlet of the bed. The position of both the gradient in oxidation state and the hot spot were strongly dependent on the furnace temperature and the gas flow (residence time). Heating as well as a higher flow rate caused a migration of the transition zone of the oxidation state/maximum in temperature towards the inlet. At the same time the hydrogen concentration in the reactor effluent increased. In contrast, at low temperatures a movement of the transition zone towards the outlet was observed at increasing flux, except if the self-heating by the exothermic methane oxidation was too strong. The results indicate that in the oxidized zone mainly combustion of methane occurs, whereas in the reduced part direct partial oxidation and reforming reactions prevail. The results demonstrate how spatially resolved spectroscopy can help in understanding catalytic reactions involving different reaction zones and gradients even in micro scale fixed-bed reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cao E, Firth S, McMillan PF, Gavriilidis A (2007) Catal Today 126:119

    Article  CAS  Google Scholar 

  2. Chan EM, Marcus MA, Fakra S, ElNaggar M, Mathies RA, Paul Alivisatos A (2007) J Phys Chem A 111:12210

    Article  CAS  Google Scholar 

  3. Beato P, Kraehnert R, Engelschalt S, Frank T, Schlögl R (2008) Chem Eng J 135S:247

    Article  Google Scholar 

  4. Clausen BS, Steffensen G, Fabius B, Villadsen J, Feidenhans’l R, Topsøe H (1991) J Catal 132:524

    Article  CAS  Google Scholar 

  5. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors: new technology for modern chemistry. Wiley-VCH,  New York

    Google Scholar 

  6. Gavriilidis A, Angeli P, Cao E, Yeong KK, Wan YSS (2002) Chem Eng Res Des 80A:3

    Article  Google Scholar 

  7. Schroer CG, Kuhlmann M, Gunzler TF, Lengeler B, Richwin M, Griesebock B, Lutzenkirchen-Hecht D, Frahm R, Ziegler E, Mashayekhi A, Haeffner DR, Grunwaldt JD, Baiker A (2003) Appl Phys Lett 82:3360

    Article  CAS  Google Scholar 

  8. Grunwaldt J-D, Hannemann S, Schroer CG, Baiker A (2006) J Phys Chem B 110:8674

    Article  CAS  Google Scholar 

  9. Bergwerff JA, van de Water LGA, Visser T, de Peinder P, Leliveld BRG, de Jong KP, Weckhuysen BM (2005) Chem Eur J 11:4592

    Article  Google Scholar 

  10. Holzwarth A, Schmidt H-W, Maier WF (1998) Angew Chem Int Ed 37:2644

    Article  CAS  Google Scholar 

  11. Grunwaldt J-D, Kimmerle B, Hannemann S, Baiker A, Boye P, Schroer CG (2007) J Mater Chem 17:2603

    Article  CAS  Google Scholar 

  12. Busch OM, Brijoux W, Thomson S, Schuth F (2004) J Catal 222:174

    Article  CAS  Google Scholar 

  13. Stavitski E, Kox MHF, Swart I, de Groot FMF, Weckhuysen BM (2008) Angew Chem Int Ed 47:3543

    Article  CAS  Google Scholar 

  14. Hickman DA, Haupfear EA, Schmidt LD (1993) Catal Lett 17:223

    Article  CAS  Google Scholar 

  15. Tyulenin YP, Savkin VV, Sinev MY, Korchak VN (2002) Kin Catal 43:847

    Article  CAS  Google Scholar 

  16. Mallens EPJ, Hoebink J, Marin GB (1997) J Catal 167:43

    Article  CAS  Google Scholar 

  17. Hickman DA, Schmidt LD (1992) J Catal 138:267

    Article  CAS  Google Scholar 

  18. Vernon PDF, Green MLH, Cheetham AK, Ashcroft AT (1990) Catal Lett 6:181

    Article  CAS  Google Scholar 

  19. Heitnes K, Lindberg S, Rokstad OA, Holmen A (1995) Catal Today 24:211

    Article  CAS  Google Scholar 

  20. Yang SW, Kondo JN, Hayashi K, Hirano M, Domen K, Hosono H (2004) Appl Catal A 277:239

    Article  CAS  Google Scholar 

  21. Rabe S, Nachtegaal M, Vogel F (2007) Phys Chem Chem Phys 9:1461

    Article  CAS  Google Scholar 

  22. Deutschmann O, Schmidt LD (1998) AIChE J 44:2465

    Article  CAS  Google Scholar 

  23. Quiceno R, Deutschmann O, Warnatz J, Perez-Ramirez J (2007) Catal Today 119:311

    Article  CAS  Google Scholar 

  24. Basini L, Aasberg-Petersen K, Guarinoni A, Ostberg M (2001) Catal Today 64:9

    Article  CAS  Google Scholar 

  25. Grunwaldt J-D, Basini L, Clausen BS (2001) J Catal 200:321

    Article  CAS  Google Scholar 

  26. Grunwaldt J-D, Kappen P, Basini L, Clausen BS (2002) Catal Lett 78:13

    Article  CAS  Google Scholar 

  27. Nakagawa K, Ikenaga NO, Kobayashi T, Suzuki T (2001) Catal Today 64:31

    Article  CAS  Google Scholar 

  28. Basile F, Fornasari G, Trifirò F, Vaccari A (2001) Catal Today 64:21

    Article  CAS  Google Scholar 

  29. Horn R, Williams KA, Degenstein NJ, Schmidt LD (2007) Chem Eng Sci 62:1298

    Article  CAS  Google Scholar 

  30. Grunwaldt J-D, Baiker A (2005) Catal Lett 99:5

    CAS  Google Scholar 

  31. Strobel R, Grunwaldt J-D, Camenzind A, Pratsinis SE, Baiker A (2005) Catal Lett 104:9

    Article  CAS  Google Scholar 

  32. Hannemann S, Grunwaldt JD, Lienemann P, Gunther D, Krumeich F, Pratsinis SE, Baiker A (2007) Appl Catal A 316:226

    Article  CAS  Google Scholar 

  33. Grunwaldt J-D, Caravati M, Hannemann S, Baiker A (2004) Phys Chem Chem Phys 6:3037

    Article  CAS  Google Scholar 

  34. Clausen BS, Grabaek L, Topsoe H, Hansen LB, Stoltze P, Nørskov JK, Nielsen OH (1993) J Catal 141:368

    Article  CAS  Google Scholar 

  35. Sankar G, Thomas JM, Chen J, Wright PA, Barrett PA, Greaves GN, Catlow CRA (1995) Nucl Instrum Methods Phys Res B 97:37

    Article  CAS  Google Scholar 

  36. Clausen BS, Topsoe H, Frahm R (1998) Adv Catal 42:315

    Article  CAS  Google Scholar 

  37. Grunwaldt J-D, Clausen BS (2002) Topics Catal 18:37

    Article  CAS  Google Scholar 

  38. Hsieh CK, Yeyinmen IM, Hsia JJG, Keskin I (1967) In: Touloukian YS (ed) Thermophysical properties of high temperature solid materials. Macmillan Company, New York, p 405

    Google Scholar 

  39. Frahm R (1989) Physica B 158:342

    Article  CAS  Google Scholar 

  40. Newton MA, Jyoti B, Dent AJ, Fiddy SG, Evans J (2004) Chem Commun 2382

  41. Hannemann S, Grunwaldt J-D, van Vegten N, Baiker A (2007) Catal Today 54

  42. Bazin D, Rehr JJ (2003) J Phys Chem B 107:12398

    Article  CAS  Google Scholar 

  43. York APE, Xiao TC, Green MLH (2003) Topics Catal 22:345

    Article  CAS  Google Scholar 

  44. Gelin P, Primet M (2002) Appl Catal B 39:1

    Article  CAS  Google Scholar 

  45. Freni S, Calogero G, Cavallaro S (2000) J Power Source 87:28

    Article  CAS  Google Scholar 

  46. Williams KA, Leclerc CA, Schmidt LD (2005) AIChE J 51:247

    Article  CAS  Google Scholar 

  47. Rabe S, Truong TB, Vogel F (2005) Appl Catal A 292:177

    Article  CAS  Google Scholar 

  48. Hu YH, Ruckenstein E (2004) Adv Catal 48:297

    Article  CAS  Google Scholar 

  49. Li BT, Kado S, Mukainakano Y, Miyazawa T, Miyao T, Naito S, Okumura K, Kunimori K, Tomishige K (2007) J Catal 245:144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank HASYLAB at DESY (Hamburg, Germany) for providing beamtime and support by Dr. Adam Webb, Mathias Herrmann and Bernd Reime throughout the measurements at the beamline X1. Furthermore, we are grateful to SLS (Villigen, Switzerland) for providing beamtime including support by Dr. C. Borca and Dr. D. Grolimund at the microXAS beamline. Pergam Suisse AG (Zurich, Switzerland) is thanked for lending the infrared camera and the help with its handling. Financial support for the spatially resolved XAS measurements is gratefully acknowledged by DESY/HASYLAB and the European Community – Research Infrastructure Action under the FP6: “Structuring the European Research Area” (“Integrating Activity on Synchrotron and Free Electron Laser Science” (IA-SFS) RII3-CT-2004-506008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Dierk Grunwaldt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannemann, S., Grunwaldt, JD., Kimmerle, B. et al. Axial Changes of Catalyst Structure and Temperature in a Fixed-Bed Microreactor During Noble Metal Catalysed Partial Oxidation of Methane. Top Catal 52, 1360–1370 (2009). https://doi.org/10.1007/s11244-009-9315-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9315-0

Keywords

Navigation