Skip to main content
Log in

H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The silica-grafted Ta(V) imido amido complex [(≡SiO)2Ta(NH)(NH2)], 2, obtained from the reaction of either ammonia or dinitrogen plus hydrogen with the silica-grafted hydrides [(≡SiO)2Ta(III)H], 1a, and [(≡SiO)2Ta(V)H3], 1b, undergoes H/D exchange with D2. In situ IR spectroscopy shows that the fully labelled compound [(≡SiO)2Ta(ND)(ND2)], 2-d, can be obtained by moderate heating (60 °C, 3 h) under D2 atmosphere (550 torr, 300 eq. with respect to Ta), and that the exchange is reversible. The observed stretching and bending frequencies of 2-d are in agreement with the expected isotopic shift upon H/D replacement with respect to literature values reported for 2 and have been corroborated by the independent synthesis of 2-d by reaction of deuterated 1a and 1b with N2 and D2. Density functional theory (DFT) calculations, performed using a periodic or a cluster model, explored the structures and energetics of all minima involved in the reaction with H2 and showed that among the explored pathways the energetically preferred mechanisms for H2 reaction with [{(μ-O)[(HO)2SiO]2}Ta(V)(NH)(NH2)], 2q, is the heterolytic cleavage of either the imido Ta=N or the amido Ta-N bonds, to yield respectively [{(μ-O)[(HO)2SiO]2}TaH(NH2)2], 3q (ΔE = −9.5 kcal mol−1 and ΔG298K = +2.6 kcal mol−1 with respect to 2q) and [{(μ-O)[(HO)2SiO]2}Ta(NH)(NH3)], 4q (ΔE = −6.0 kcal mol−1 and ΔG298K = +7.9 kcal mol−1 with respect to 2q). All activation barriers are moderate (between 17.7 and 30.2 kcal mol−1) in agreement with the observed mild heating conditions necessary for the reaction to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Braun T (2005) Angew Chem, Int Ed 44:5012–5014

    Article  CAS  Google Scholar 

  2. Shilov AE (2003) Russ Chem Bull 52:2555–2562

    Article  CAS  Google Scholar 

  3. Zhao J, Goldman AS, Hartwig JF (2005) Science 307:1080–1082

    Article  CAS  Google Scholar 

  4. Fox DJ, Bergman RG (2004) Organometallics 23:1656–1670

    Article  CAS  Google Scholar 

  5. Chao YW, Wexler PA, Wigley DE (1990) Inorg Chem 29:4592–4594

    Article  CAS  Google Scholar 

  6. Schrock RR, Murdzek JS, Bazan GC, Robbins J, DiMare M, O’Regan M (1990) J Am Chem Soc 112:3875–3886

    Article  CAS  Google Scholar 

  7. Yandulov DV, Schrock RR (2003) Science 301:76–78

    Article  CAS  Google Scholar 

  8. Conner D, Jayaprakash KN, Cundari TR, Gunnoe TB (2004) Organometallics 23:2724–2733

    Article  CAS  Google Scholar 

  9. Soignier S, Taoufik M, Le Roux E, Saggio G, Dablemont C, Baudouin A, Lefebvre F, De Mallmann A, Thivolle-Cazat J, Basset J-M, Sunley G, Maunders BM (2006) Organometallics 25:1569–1577

    Article  CAS  Google Scholar 

  10. Vidal V, Théolier A, Thivolle-Cazat J, Basset J-M, Corker J (1996) J Am Chem Soc 118:4595–4602

    Article  CAS  Google Scholar 

  11. Vidal V, Théolier A, Thivolle-Cazat J, Basset J-M (1997) Science 276:99–102

    Article  CAS  Google Scholar 

  12. Basset JM, Copéret C, Lefort L, Maunders BM, Maury O, Le Roux E, Saggio G, Soignier S, Soulivong D, Sunley GJ, Taoufik M, Thivolle-Cazat J (2005) J Am Chem Soc 127:8604–8605

    Article  CAS  Google Scholar 

  13. Taoufik M, Schwab E, Schultz M, Vanoppen D, Walter M, Thivolle-Cazat J, Basset J-M (2004) Chem Commun 1434–1435

  14. Soulivong D, Copéret C, Thivolle-Cazat J, Basset J-M, Maunders BM, Pardy RBA, Sunley GJ (2004) Angew Chem, Int Ed 43:5366–5369

    Article  CAS  Google Scholar 

  15. Avenier P, Lesage A, Taoufik M, Baudouin A, De Mallmann A, Fiddy S, Vautier M, Veyre L, Basset J-M, Emsley L, Quadrelli EA (2007) J Am Chem Soc 129:176–186

    Article  CAS  Google Scholar 

  16. Avenier P, Taoufik M, Lesage A, Solans-Monfort X, Baudouin A, de Mallmann A, Veyre L, Basset JM, Eisenstein O, Emsley L, Quadrelli EA (2007) Science 317:1056–1060

    Article  CAS  Google Scholar 

  17. Albeniz AC, Heinekey DM, Crabtree RH (1991) Inorg Chem 30:3632–3635

    Article  CAS  Google Scholar 

  18. Zaera F (1995) Chem Rev 95:2651–2693

    Article  CAS  Google Scholar 

  19. Perthuisot C, Fan M, Jones WD (1992) Organometallics 11:3622–3629

    Article  CAS  Google Scholar 

  20. Jacobsen EN, Goldberg KI, Bergman RG (1988) J Am Chem Soc 110:3706–3707

    Article  CAS  Google Scholar 

  21. Casty GL, Matturro MG, Myers GR, Reynolds RP, Hall RB (2001) Organometallics 20:2246–2249

    Article  CAS  Google Scholar 

  22. Lefort L, Copéret C, Taoufik M, Thivolle-Cazat J, Basset J-M (2000) Chem Commun 663–664

  23. Yu SY, Biscardi JA, Iglesia E (2002) J Phys Chem B 106:9642–9648

    Article  CAS  Google Scholar 

  24. Joshi AM, Delgass WN, Thomson KT (2007) Top Catal 44:27–39

    Article  CAS  Google Scholar 

  25. Polyakov M, Poisot M, Bensch W, Muhler M, Grünert W (2008) J Catal 256:137–144

    Article  CAS  Google Scholar 

  26. Maishal TK, Alauzun J, Basset J-M, Copéret C, Corriu RJP, Jeanneau E, Mehdi A, Reye C, Veyre L, Thieuleux C (2008) AngewChem, Int Ed 47:8654–8656

    Article  CAS  Google Scholar 

  27. Zhou J, Hartwig JF (2008) Angew Chem, Int Ed 47:5783–5787

    Article  CAS  Google Scholar 

  28. Hothi P, Roujeinikova A, Khadra KA, Lee M, Cullis P, Leys D, Scrutton NS (2007) Biochemistry 46:9250–9259

    Article  CAS  Google Scholar 

  29. Zhao X, Chiang C-Y, Miller ML, Rampersad MV, Darensbourg MY (2003) J Am Chem Soc 125:518–524

    Article  CAS  Google Scholar 

  30. Vignais PM (2005) Coord Chem Rev 249:1677–1690

    Article  CAS  Google Scholar 

  31. Maier CS, Deinzer ML (2005) Methods Enzymol 402:312–360

    Article  CAS  Google Scholar 

  32. Loaiza A, Zaera F (2004) J Am Soc Mass Spectrom 15:1366–1373

    Article  CAS  Google Scholar 

  33. Liu David Q, Wu L, Sun M, MacGregor Paul A (2007) J Pharm Biomed Anal 44:320–329

    Article  CAS  Google Scholar 

  34. Atzrodt J, Derdau V, Fey T, Zimmermann J (2007) Angew Chem, Int Ed 46:7744–7765

    Article  CAS  Google Scholar 

  35. Khulbe KC, Mann RS, Manoogian A (1980) Chem Rev 80:417–428

    Article  CAS  Google Scholar 

  36. Toomey HE, Pun D, Veiros LF, Chirik PJ (2008) Organometallics 27:872–879

    Article  CAS  Google Scholar 

  37. Casey CP, Johnson JB (2005) J Am Chem Soc 127:1883–1894

    Article  CAS  Google Scholar 

  38. Bernskoetter WH, Lobkovsky E, Chirik PJ (2005) J Am Chem Soc 127:14051–14061

    Article  CAS  Google Scholar 

  39. Nanba T, Meunier FC, Hardacre C, Breen JP, Burch R, Masukawa S, Uchisawa J, Obuchi A (2008) J Phys Chem 112:18157–18163

    CAS  Google Scholar 

  40. Sellmann D, Sutter JZ (2003) Anorg Allerg Chem 629:893–901

    Article  CAS  Google Scholar 

  41. Balcells D, Nova A, Clot E, Gnanamgari D, Crabtree RH, Eisenstein O (2008) Organometallics 27:2529–2535

    Article  CAS  Google Scholar 

  42. Samec JSM, Éll AH, Åberg JB, Privalov T, Eriksson L, Bäckvall J-E (2006) J Am Chem soc 128:14293–14305

    Article  CAS  Google Scholar 

  43. Éll AH, Samec JSM, Brasse C, Bäckvall J-E (2002) Chem Commun 1144–1145

  44. Schrock RR, Fellmann JD (1978) J Am Chem Soc 100:3359–3370

    Article  CAS  Google Scholar 

  45. Chen CY, Li HX, Davis ME (1993) Microporous Mater 2:17–26

    Article  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, TV, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Rev. B.04 ed. Gaussian Inc., Pittsburgh, PA

  47. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  48. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  49. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  50. Andrae D, Häuβermann U, Dolg M, Stoll H, Preuβ H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  51. Bergner A, Dolg M, Küchle W, Stoll H, Preuβ H (1993) Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  52. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  53. Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking A (1993) Chem Phys Lett 208:237–240

    Article  Google Scholar 

  54. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  55. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  56. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  57. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  58. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  59. Solans-Monfort X, Filhol J-S, Copéret C, Eisenstein O (2006) New J Chem 30:842–850

    Article  CAS  Google Scholar 

  60. Rhers B, Salameh A, Baudouin A, Quadrelli EA, Taoufik M, Copéret C, Lefebvre F, Basset J-M, Solans-Monfort X, Eisenstein O, Lukens WW, Lopez LPH, Sinha A, Schrock RR (2006) Organometallics 25:3554–3557

    Article  CAS  Google Scholar 

  61. Blanc F, Basset J-M, Copéret C, Sinha A, Tonzetich ZJ, Schrock RR, Solans-Monfort X, Clot E, Eisenstein O, Lesage A, Emsley L (2008) J Am Chem Soc 130:5886–5900

    Article  CAS  Google Scholar 

  62. Chabanas M, Quadrelli EA, Fenet B, Copéret C, Thivolle-Cazat J, Basset J-M, Lesage A, Emsley L (2001) Angew Chem, Int Ed 40:4493–4496

    Article  CAS  Google Scholar 

  63. Thieuleux C, Quadrelli EA, Basset J-M, Döbler J, Sauer J (2004) Chem Commun 1729–1731

  64. Copéret C, Grouiller A, Basset J-M, Chermette H (2003) Chemphyschem 4:608–611

    Article  Google Scholar 

  65. Besedin DV, Ustynyuk LY, Ustynyuk YA, Lunin VV (2005) Top Catal 32:47–60

    Article  CAS  Google Scholar 

  66. Ustynyuk LY, Aleshkin IA, Suleimanov YV, Besedin DV, Ustynyuk YA, Lunin VV (2007) Russ J Phys Chem A 81:752–758

    Article  CAS  Google Scholar 

  67. Mikhailov MN, Bagatur yants AA, Kustov LM (2003) Russ Chem Bull 52:30–35

    Article  CAS  Google Scholar 

  68. Mikhailov MN, Kustov LM (2005) Russ Chem Bull 54:300–311

    Article  CAS  Google Scholar 

  69. Solans-Monfort X, Clot E, Copéret C, Eisenstein O (2005) Organometallics 24:1586–1597

    Article  CAS  Google Scholar 

  70. Poater A, Solans-Monfort X, Clot E, Copéret C, Eisenstein O (2006) Dalton Trans 3077–3087

  71. Maron L, Perrin L, Eisenstein O. (2002) J Chem Soc, Dalton Trans 534–539

  72. Caulton KG, Chisholm MH, Streib WE, Xue Z (1991) J Am Chem Soc 113:6082–6090

    Article  CAS  Google Scholar 

  73. Chen T, Wu Z, Li L, Sorasaenee KR, Diminnie JB, Pan H, Guzei IA, Rheingold AL, Xue Z (1998) J Am Chem Soc 120:13519–13520

    Article  CAS  Google Scholar 

  74. Morton LA, Zhang XH, Wang RT, Lin ZY, Wu YD, Xue ZL (2004) J Am Chem soc 126:10208–10209

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The European Network of Excellence IDECAT is gratefully acknowledged. EAQ thanks French Agence Nationale de la Recherche for a young researcher grant “N2Activation” (ANR-08-JCJC-0086-01). The BSC (Barcelona Supercomputing Center) and CESCA (Catalan Supercomputing Center) are acknowledged for generous donation of computational time.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Odile Eisenstein or Elsje Alessandra Quadrelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avenier, P., Solans-Monfort, X., Veyre, L. et al. H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2 . Top Catal 52, 1482–1491 (2009). https://doi.org/10.1007/s11244-009-9295-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9295-0

Keywords

Navigation