Skip to main content
Log in

CO Oxidation and Toluene Hydrogenation by Pt/TiO2 Catalysts Prepared from Dendrimer Encapsulated Nanoparticle Precursors

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Generation 4 hydroxyl terminated polyamidoamine (PAMAM) dendrimer encapsulated nanoparticles (DENs) were examined as precursors for Pt/TiO2 catalysts. In this preparation method, the dendrimers were initially used to template and stabilize Pt nanoparticles in solution. DENs were then deposited onto titania, and activation conditions for dendrimer thermolysis were examined. The interactions between PAMAM dendrimers and the titania were found to differ from previous reports of dendrimer-support interactions with silica, alumina, and zirconia. In the case of titania, the amide bonds were found to shift 100 cm−1, indicating adsorption occurs primarily through amide–titania interactions. Infrared spectroscopy, CO oxidation catalysis, and toluene hydrogenation catalysis were used to evaluate protocols for removing the dendrimer. Thermal decomposition of the DENs in O2 or CO/O2 atmospheres led to the formation of surface isocyanates that were preferentially bound to the metal nanoparticles. CO oxidation catalysis was insensitive to the activation protocol used, and infrared spectroscopy of adsorbed CO showed only small differences in the basic surface properties of the resulting Pt catalysts. Toluene hydrogenation catalysis was more sensitive to different activation pretreatments. The most active hydrogenation catalysts resulted from short, low temperature (150 °C) hydrogen treatments while longer treatments at higher temperature (300 °C) resulted in slightly less active catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ponec V, Bond GC (1995) Catalysis by metals and alloys, vol 95. Elsevier, Amsterdam

    Google Scholar 

  2. Heck RM, Farrauto R (2001) J Appl Catal A Gen 221:443

    Article  CAS  Google Scholar 

  3. Bhattacharyya S, Das R (1999) K. Int J Energ Res 23:351

    Article  CAS  Google Scholar 

  4. Song CS (2002) Catal Today 77:17

    Article  CAS  Google Scholar 

  5. Chandler BD, Gilbertson JD (2006) In: Gade L (ed) Topics in organometallic chemistry, vol 21. Springer, New York, p 97

  6. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem B 109:692

    Article  CAS  Google Scholar 

  7. Scott RWJ, Wilson OM, Crooks RM (2005) J Phys Chem 109:692

    CAS  Google Scholar 

  8. Liu DX, Gao JX, Murphy CJ, Williams CT (2004) J Phys Chem B 108:12911

    Article  CAS  Google Scholar 

  9. Ye H, Crooks RM (2007) J Am Chem Soc 129:3627

    Article  CAS  Google Scholar 

  10. Vijayaraghavan G, Stevenson KJ (2007) Langmuir 23:5279

    Article  CAS  Google Scholar 

  11. Lang H, May RA, Iversen BL, Chandler BD (2003) J Am Chem Soc 125:14832

    Article  CAS  Google Scholar 

  12. Deutsch SD, Lafaye G, Liu D, Chandler BD, Williams CT, Amiridis MD (2004) Catal Lett 97:139

    Article  CAS  Google Scholar 

  13. Lang H, Maldonado S, Stevenson KJ, Chandler BD (2004) J Am Chem Soc 126:12949

    Article  CAS  Google Scholar 

  14. Lang H, May RA, Iversen BL, Chandler BD (2005) In: Sowa J (ed) Catalysis of organic reactions. Taylor & Francis Group/CRC Press, Boca Raton, FL, p 243

    Google Scholar 

  15. Ozturk O, Black TJ, Perrine K, Pizzolato K, Williams CT, Parsons FW, Ratliff JS, Gao J, Murphy CJ, Xie H, Ploehn HJ, Chen DA (2005) Langmuir 21:3998

    Article  CAS  Google Scholar 

  16. Sun L, Crooks RM (2002) Langmuir 18:8231

    Article  CAS  Google Scholar 

  17. Scott RWJ, Wilson OM, Crooks RM (2004) Chem Mater 16:5682

    Article  CAS  Google Scholar 

  18. Lafaye G, Williams CT, Amiridis MD (2004) Catal Lett 96:43

    Article  CAS  Google Scholar 

  19. Choi HC, Kim W, Wang D, Dai H (2002) J Phys Chem B 106:12361

    Article  CAS  Google Scholar 

  20. Larsen G, Noriega S (2004) Appl Catal A Gen 278:73

    Article  CAS  Google Scholar 

  21. Scott RWJ, Sivadinarayana C, Wilson OM, Yan Z, Goodman DW, Crooks RM (2005) J Am Chem Soc 127:1380

    Article  CAS  Google Scholar 

  22. Forzatti P, Lietti L (1999) Catal Today 52:165

    Article  CAS  Google Scholar 

  23. Bartholomew CH (2001) Appl Catal A Gen 212:17

    Article  CAS  Google Scholar 

  24. Auten B, Crump CJ, Singh AR, Chandler BD (2006) In: Schmidt SR (ed) Catalysis of organic reactions. CRC Press, Boca Raton, FL, p 315

    Google Scholar 

  25. Beakley L, Yost S, Cheng R, Chandler BD (2005) Appl Catal A Gen 292:124

    Article  CAS  Google Scholar 

  26. Singh A, Chandler BD (2005) Langmuir 21:10776

    Article  CAS  Google Scholar 

  27. Deutsch DS, Siani A, Fanson PT, Hirata H, Matsumoto S, Williams CT, Amiridis MD (2007) J Phys Chem C 111:4246

    Article  CAS  Google Scholar 

  28. Alexeev OS, Siani A, Lafaye G, Williams CT, Ploehn HJ, Amiridis MD (2006) J Phys Chem B 110:24903

    Article  CAS  Google Scholar 

  29. Lafaye G, Siani A, Marecot P, Amiridis MD, Williams CT (2006) J Phys Chem B 110:7725

    Article  CAS  Google Scholar 

  30. Chuang C-C, Wu W-C, Lee M-X, Lin J-L (2000) Phys Chem Chem Phys 2:3877

    Article  CAS  Google Scholar 

  31. Liao LF, Lien CF, Shieh DL, Chen FC, Lin JL (2002) Phys Chem Chem Phys 4:4584

    Article  CAS  Google Scholar 

  32. Zhuang J, Rusu CN, Yates JT Jr (1999) J Phys Chem B 103:6957

    Article  CAS  Google Scholar 

  33. Gu Y, Xie H, Gao J, Liu D, Williams CT, Murphy CJ, Ploehn HJ (2005) Langmuir 21:3122

    Article  CAS  Google Scholar 

  34. Maiti PK, Cagin T, Lin S-T, Goddard WAIII (2005) Macromolecules 38:979

    Article  CAS  Google Scholar 

  35. Flores-Moreno JL, Delahay G, Figueras F, Coq B (2005) J Catal 236:292

    Article  CAS  Google Scholar 

  36. Vannice MA, Twu CC, Moon SH (1983) J Catal 79:70

    Article  CAS  Google Scholar 

  37. Lin SD, Vannice MA (1993) J Catal 143:563

    Article  CAS  Google Scholar 

  38. Lin SD, Vannice MA (1993) J Catal 143:554

    Article  CAS  Google Scholar 

  39. Catalysts reduced for less than 2 h at 150 C did not yield reproducible kinetics

  40. Benvenutti EV, Franken L, Moro CC, Davanzo CU (1999) Langmuir 15:8140

    Article  CAS  Google Scholar 

  41. Vannice MA, Twu CC (1983) J Catal 82:213

    Article  CAS  Google Scholar 

  42. Coloma F, Coronado JM, Rochester CH, Anderson JA (1998) Catal Lett 51:155–162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Robert A. Welch Foundation (Grant numbers W-1552) and the U.S. National Science Foundation (Grant number CHE-0449549) for financial support of our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert D. Chandler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crump, C.J., Gilbertson, J.D. & Chandler, B.D. CO Oxidation and Toluene Hydrogenation by Pt/TiO2 Catalysts Prepared from Dendrimer Encapsulated Nanoparticle Precursors. Top Catal 49, 233–240 (2008). https://doi.org/10.1007/s11244-008-9093-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9093-0

Keywords

Navigation