Skip to main content
Log in

Synthesis of Pt3Co Alloy Nanocatalyst via Reverse Micelle for Oxygen Reduction Reaction in PEMFCs

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Monodispersed, uniformly alloyed Pt3Co alloy nanoparticle electrocatalysts were synthesized via reduction of metallic precursors by sodium borohydride in heptane/polyethylene glycol dodecylether (Brij)/water reverse micelles. These particles were further adsorbed on XC-72R carbon powder, separated from micelles, and characterized using X-ray diffraction (XRD), transmission electronic microscopy (TEM). The electrochemical activity for the oxygen reduction reaction (ORR) was characterized using a Rotating Disk Electrode (RDE) technique. Even though residual surfactants on the metallic nanoparticle reduced the active surface area of the electrocatalytic particles, the catalytic activity of the prepared Pt3Co nanoparticles exhibited higher Pt mass and Pt surface area specific activities compared to pure Pt. The impact of heat treatment on the mean particle size, the electrochemical surface area (ESA), and on the activity was investigated and correlated to the residual surfactant coverage. Intermediate annealing temperatures resulted in larger ESA, despite particle growth pointing to lower surfactant coverage. Higher annealing temperatures caused large particle growth and reduced ESA, yet significant activity gains. A surface segregation mechanism resulting in a catalytically active Pt skin structure is hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Luczak FJ, Landsman DA (1984) Ternary fuel cell catalysts containing platinum, cobalt and chromium

  2. Beard BC, Philip J, Ross N (1990) J Electrochem Soc 137:3368–3374

    Article  CAS  Google Scholar 

  3. Mukerjee S, Srinivasan S (1993) J Electroanal Chem 357:201–224

    Article  CAS  Google Scholar 

  4. Min M-K, Cho J, Cho K, Kim H (2000) Electrochim Acta 45:4211–4217

    Article  CAS  Google Scholar 

  5. Koh S, Leisch J, Toney MF, Strasser P (2007) J Phys Chem C 111:3744–3752

    Article  CAS  Google Scholar 

  6. Koh S, Toney MF, Strasser P (2007) Electrochim Acta 52:2765–2774

    Article  CAS  Google Scholar 

  7. Xu H, Kunz HR, Bonville LJ, Fenton JM (2007) J Electrochem Soc 154:B271–B278

    Article  CAS  Google Scholar 

  8. Koh S, Yu C, Mani P, Srivastava R, Strasser P (2007) J Power Sourc 172:50–56

    Article  CAS  Google Scholar 

  9. Lima FHB, Lizcano-Valbuena WH, Teixeira-Neto E, Nart FC, Gonzalez ER, Ticianelli EA (2006) Electrochim Acta 52:385–393

    Article  CAS  Google Scholar 

  10. Wakabayashi N, Takeichi M, Uchida H, Watanabe M (2005) J Phys Chem B 109:5836–5841

    Article  CAS  Google Scholar 

  11. Pharkya P, Alfantazi A, Farhat Z (2005) J Fuel Cell Sci Tech 2:171–178

    Article  CAS  Google Scholar 

  12. Zeng J, Lee JY (2005) J Power Sourc 140:268–273

    Article  CAS  Google Scholar 

  13. Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Int J Hydrogen Energy 30:1213–1220

    Article  CAS  Google Scholar 

  14. Salgado JRC, Antolini E, Gonzalez ER (2005) Appl Catal B 57:283–290

    Article  CAS  Google Scholar 

  15. Salgado JRC, Antolini E, Gonzalez ER (2004) J Phys Chem B 108:17767–17774

    Article  CAS  Google Scholar 

  16. Salgado JRC, Antolini E, Gonzalez ER (2004) J Power Sourc 138:56–60

    Article  CAS  Google Scholar 

  17. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) J Phys Chem B 106:4181–4191

    Article  CAS  Google Scholar 

  18. Xiong L, Manthiram A (2005) J Electrochem Soc 152:A697–A703

    Article  CAS  Google Scholar 

  19. Jalan VM, Taylor EJ (1983) J Electrochem Soc 130:2299–2301

    Article  CAS  Google Scholar 

  20. Stamenkovic V, Moon BS, Mayerhofer KJ, Ross PN, Markovic N, Rossmeisl J, Greeley J, Norskov JK (2006) Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  21. Bardi U, Beard BC, Ross PN (1990) J Catal 124:22

    Article  CAS  Google Scholar 

  22. Gasteiger HA, Ross PN, Carins EJ (1993) Surf Sci 293:67

    Article  CAS  Google Scholar 

  23. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Electrochim Acta 47:3787–3798

    Article  CAS  Google Scholar 

  24. Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J (1995) J Electrochem Soc 142:1409–1422

    Article  CAS  Google Scholar 

  25. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B: Environ 56:9–35

    Article  CAS  Google Scholar 

  26. Choo HP, Liewa KY, Liu H, Seng CE, Mamood WAK (2003) J Mol Catal A 191:113–121

    Article  CAS  Google Scholar 

  27. Yashima M, Falk LKL, Palmqvist AEC, Holmberg K (2003) J Colloid Interface Sci 268:348–356

    Article  CAS  Google Scholar 

  28. Toshima N, Shiraishi Y, Teranishi T (2001) J Mol Catal A 177:139–147

    Article  CAS  Google Scholar 

  29. Jiang SP, Li L, Liu Z, Pan M, Tang HL (2005) Electrochem Solid-State Lett 8:A574–A576

    Article  CAS  Google Scholar 

  30. Pan M, Tang H, Jiang SP, Liu Z (2005) J Electrochem Soc 152:A1081–A1088

    Article  CAS  Google Scholar 

  31. Pan M, Tang HL, Jiang SP, Liu Z (2005) Electrochem Commun 7:119–124

    Article  CAS  Google Scholar 

  32. Tang HL, Luo ZP, Pan M, Jiang SP, Liu Z (2005) J Chem Res 7:449–451

    Article  Google Scholar 

  33. Jiang SP, Liu Z, Tang HL, Pan M (2006) Electrochim Acta 51:5721–5730

    Article  CAS  Google Scholar 

  34. Liu Z, Jiang SP (2006) J Power Sources 159:55–58

    Article  CAS  Google Scholar 

  35. Liu Z, Tian ZQ, Jiang SP (2006) Electrochim Acta 52:1213–1230

    Article  CAS  Google Scholar 

  36. Tian ZQ, Jiang SP, Liu Z, Li L (2007) Electrochem Commun 9:1613–1618

    Article  CAS  Google Scholar 

  37. Liu Z, Koh S, Yu C, Strasser P (2007) J Electrochem Soc 154:B1192–B1199

    Article  CAS  Google Scholar 

  38. Sra AK, Ewers TD, Schaak RE (2005) Chem Mater 17:758–766

    Article  CAS  Google Scholar 

  39. Sra AK, Schaak RE (2004) J Am Chem Soc 126:6667–6672

    Article  CAS  Google Scholar 

  40. Cable RE, Schaak RE (2005) Chem Mater 17:6835–6841

    Article  CAS  Google Scholar 

  41. Schaak RE, Sra AK, Leonard BM, Cable RE, Bauer JC, Han Y-F, Means J, Teizer W, Vasquez Y, Funck ES (2005) J Am Chem Soc 127:3506–3515

    Article  CAS  Google Scholar 

  42. Zhang X, Chan K-Y (2002) J Mater Chem 12:1203–1206

    Article  CAS  Google Scholar 

  43. Santos LGRA, Oliveira CHF, Moraes IR, Ticianelli EA (2006) J Electroanal Chem 596:141–148

    Article  CAS  Google Scholar 

  44. Kumbhar A, Spinu L, Agnoli F, Wang K-Y, Zhou W, O’connor CJ (2001) IEEE Trans Mag 37:2216–2218

    Article  CAS  Google Scholar 

  45. Chen D-H, Wu S-H (2000) Chem Mater 12:1354–1360

    Article  CAS  Google Scholar 

  46. He T, Kreidler E, Xiong L, Luo J, Zhong CJ (2006) J Electrochem Soc 153:A1637–A1643

    Article  CAS  Google Scholar 

  47. Xiong L, Manthiram A (2005) Electrochim Acta 50:2323–2329

    Article  CAS  Google Scholar 

  48. Siné G, Smida D, Limat M, Fóti G, Comninellis C (2007) J Electrochem Soc 154:B170–B174

    Article  CAS  Google Scholar 

  49. Merzougui B, Swathirajan S (2006) J Electrochem Soc 153:A2220–A2226

    Article  CAS  Google Scholar 

  50. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) J Electrochem Soc 141:2659–2668

    Article  CAS  Google Scholar 

  51. Icdd, International Center for Diffraction Data - Power Diffraction File (PDF) 2 data CD http://www.icdd.com/, (2002).

  52. Yu P, Pemberton M, Plasse P (2005) J Power Sourc 144:11–20

    Article  CAS  Google Scholar 

  53. Lafaye G, Siani A., Marecot P, Amiridis MD, Williams CT (2006) J Phys Chem B 11:7725–7731

    Google Scholar 

  54. Lafaye G, Williams CT, Amiridis MD (2004) Catal Lett 96:43–47

    Article  CAS  Google Scholar 

  55. Ehrburger P, Mongilardi A, Lahaye J (1983) J Colloid Interface Sci 91:151–159

    Article  CAS  Google Scholar 

  56. Roman-Martinez MC, Cazorla-Amoros D, Linares-Solano A, Lecea CS-MD, Yamashita H, Anpo M (1995) Carbon 33:3–13

    Article  CAS  Google Scholar 

  57. Chingombe P, Saha B, Wakeman RJ (2006) J Colloid Interface Sci 302:408–416

    Article  CAS  Google Scholar 

  58. Jaouen FDR, Marcotte SB, Dodelet J-P, Lindbergh G (2003) J Phys Chem B 107:1376–1386

    Article  CAS  Google Scholar 

  59. Naga K, Nakajima T, Ohzawa Y, Mazej Z, Žemva B, Groultc H (2007) J Electrochem Soc 154:A347–A352

    Article  CAS  Google Scholar 

  60. Park J, Shaw BR (1994) J Electrochem Soc 141:323–330

    Article  CAS  Google Scholar 

  61. Wang H, Cote R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042–2049

    Article  CAS  Google Scholar 

  62. Koh S, Strasser P (2007) J Am Chem Soc 129:12624

    Article  CAS  Google Scholar 

  63. Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J (1995) J Phys Chem 99:4577

    Article  CAS  Google Scholar 

  64. Mavrikakis M, Hammer B, Norskov JK (1998) Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  65. Strasser P, Koh S, Yu C (2007) ECS Transactions 11:167–180

    Article  CAS  Google Scholar 

  66. Srivastava R, Mani P, Hahn N, Strasser P (2007) Angew Chem Int Ed 46:1–5

    Article  CAS  Google Scholar 

  67. Koh S, Yu C, Strasser P (2007) ECS Transactions 11:205–215

    Article  CAS  Google Scholar 

  68. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) J Am Chem Soc 128:8702–8988

    Article  CAS  Google Scholar 

  69. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) J Electroanal Chem 554:191–199

    Article  CAS  Google Scholar 

  70. Stamenkovic V, Mun BS, Arenz M, Mayerhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic N (2007) Nat Mater 6:241

    Article  CAS  Google Scholar 

  71. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493

    Article  CAS  Google Scholar 

  72. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) J Phys Chem B 106:11970–11979

    Article  CAS  Google Scholar 

  73. Ruban AV, Skriver HL, Nørskov JK (1999) Phys Rev B 59:15990–16000

    Article  Google Scholar 

  74. Ruban A, Hammer B, Stoltze P, Skriver HL, Nørskov JK (1997) J Mol Catal A Chem 115:421

    Article  CAS  Google Scholar 

  75. Hammer B, Nørskov JK (1995) Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  76. Norskov JK (2005) J Electrochem. Soc 152:J23

    CAS  Google Scholar 

  77. Nilsson A, Pettersson LGM, Hammer B, Bligaard T, Christensen CH, Norskov JK (2005) Catal Lett 100:111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Department of Energy, Office of Basic Energy Sciences (BES), under grant LAB04-20 via a subcontract with Stanford Synchrotron Radiation Laboratory, and by the National Science Foundation, award # 0729722. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research (grant #44165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Strasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Yu, C., Rusakova, I.A. et al. Synthesis of Pt3Co Alloy Nanocatalyst via Reverse Micelle for Oxygen Reduction Reaction in PEMFCs. Top Catal 49, 241–250 (2008). https://doi.org/10.1007/s11244-008-9083-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9083-2

Keywords

Navigation