Skip to main content
Log in

Preparation of Highly Active TiO2 Nano-particle Photocatalysts by a Flame Aerosol Method for the Complete Oxidation of 2-Propanol

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A flame aerosol method has been employed to prepare spherical TiO2 nano-particle photocatalysts with controlled anatase/rutile phase ratios without calcination at higher temperatures. This method was found to have important advantages since the main factors in achieving high photocatalytic activity such as the particle size, crystallinity and the anatase/rutile phase ratios could be easily controlled. In particular, the incorporation of small amounts of bimetals, such as Fe and Zn, were found to initiate the formation of well-crystalline, small and uniform spherical nano-size particles with a well-defined anatase/rutile phase ratio of around 60/40, similar to P-25 TiO2. This suppressed the recombination of the photoformed charge carriers leading to a significant increase in the photocatalytic reactivity of the TiO2 nano-particles. The incorporation of very small amounts of mono-metals, such as Fe, Cr and Zn (around 1 at.%), within the TiO2 nano-particles led to a slight increase in the photocatalytic activity of the TiO2 nano-particle photocatalysts for the complete oxidation of 2-propanol dissolved in water into CO2 and H2O as compared with the unincorporated pure TiO2. The incorporation of bimetals of Fe and Zn within TiO2 (Fe/Zn–TiO2) nano-particles, on the other hand, led to a remarkable enhancement in the photocatalytic activity as compared with the unincorporated and mono-metal incorporated TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anpo M (2004) Bull Chem Soc Jpn 77:1427 and other references cited therein

    Article  CAS  Google Scholar 

  2. Herrmann JM, Guillard C, Disdier J, Lehaut C, Malato S, Blanco J (2002) Appl Catal B 35:281

    Article  CAS  Google Scholar 

  3. Yan M, Chen F, Zhang J, Anpo M (2005) J Phys Chem B 109:8673

    Article  CAS  Google Scholar 

  4. Hurum DC, Gray KA, Rajh T, Thurnauer MC (2004) J Phys Chem B 108:16483

    Article  CAS  Google Scholar 

  5. Neppolian B, Jie HS, Ahn JP, Park JK, Anpo M (2004) Chem Lett 1562

  6. Neppolian B, Yamashita H, Okada Y, Nishijima H, Anpo M (2004) Chem Lett 268

  7. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545

    Article  CAS  Google Scholar 

  8. Martyanov IN, Klabunde KJ (2004) J Catal 225:408

    Article  CAS  Google Scholar 

  9. Panagiotopoulou P, Kondarides D (2004) J Catal 225:327

    Article  CAS  Google Scholar 

  10. Pratsinis SE (1998) Prog Energy Combust Sci 24:197

    Article  CAS  Google Scholar 

  11. Stark WJ, Wegner K, Pratsinis SE, Baiker A (2001) J Catal 197:182

    Article  CAS  Google Scholar 

  12. Wegner K, Pratsinis SE (2003) AIChE 49:1667

    Article  CAS  Google Scholar 

  13. Wegner K, Pratsinis SE (2004) Chimica Oggi Chem Today 22:27

    CAS  Google Scholar 

  14. Wegner K, Stark WJ Pratsinis SE (2002) Materials Lett 55:318

    Article  CAS  Google Scholar 

  15. Vemury S, Pratsinis SE (1995) Appl Phys Lett 66:3275

    Article  CAS  Google Scholar 

  16. Choi W, Termin A, Hoffmann MR (1994) J Phys Chem B 98:13669

    Article  Google Scholar 

  17. Anpo M, Takeuchi M (2003) J Catal 216:505

    Article  CAS  Google Scholar 

  18. Yamashita H, Anpo M (2004) Catal Surv Asia 8:35

    Article  CAS  Google Scholar 

  19. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Catal Today 84:191

    Article  CAS  Google Scholar 

  20. Liu Y, Liu CY, Rong QH, Zhang Z, Wang CY (2004) Res Chem Intermed 30:569

    Article  CAS  Google Scholar 

  21. Nagaveni K, Hegde MS, Madras G (2004) J Phys Chem B 108:20204

    Article  CAS  Google Scholar 

  22. Qi G, Yang RT (2003) Appl Catal B 44:217

    Article  CAS  Google Scholar 

  23. Gao W, Guan N, Chen J, Guan X, Jin R, Zeng H, Liu Z, Zhang F (2003) Appl Catal B 46:341

    Article  CAS  Google Scholar 

  24. Kumar MS, Schwidder M, Grunert W, Bruckner A (2004) J Catal 227:384

    Article  CAS  Google Scholar 

  25. Holland AW, Li G, Shahin AM, Long GJ, Bell AT, Tilley TD (2005) J Catal 235:150

    Article  CAS  Google Scholar 

  26. Goldfarb D, Bernardo M, Strohmaier KG, Vaughan DEW, Thomann H (1994) J Am Chem Soc 116:6344

    Article  CAS  Google Scholar 

  27. Selvam P, Dapurkar SE, Badamali SK, Murugasan M, Kuwano H (2001) Catal Today 68:69

    Article  CAS  Google Scholar 

  28. Subramanian V, Wolf EE, Kamat PV (2003) Langmuir 19:469

    Article  CAS  Google Scholar 

  29. Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Appl Catal A 244:383

    Article  CAS  Google Scholar 

  30. Ohno T, Sarukawa K, Matsumura M (2001) J Phys Chem B 105:2417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both KIST and the Japan Society for the Promotion of Science (JSPS) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. K. Park or M. Anpo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H., Jie, H.S., Neppolian, B. et al. Preparation of Highly Active TiO2 Nano-particle Photocatalysts by a Flame Aerosol Method for the Complete Oxidation of 2-Propanol. Top Catal 47, 166–174 (2008). https://doi.org/10.1007/s11244-007-9019-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-9019-2

Keywords

Navigation