Skip to main content
Log in

Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The study of the catalytic behavior of phenol oxidation by hydrogen peroxide in presence of iron has shown that both heterogeneous and homogeneous catalytic systems behave similarly. For both systems, the reaction has been found sensitive to the pH, the highest phenol conversion and TOC abatement being obtained at a pH value close to 3.7. However, the heterogeneous catalytic system appears to be less sensitive to the pH and more efficient in TOC abatement than the homogeneous one. The measurement of OH° (h) production by an ESR spin trapping technique using DMPO as trapping agent strongly suggests that the main active species are hydroxyl (OH°) and/or hydroperoxyl (HO2°) radicals. The very low amount of iron dissolved by the reaction (less than 2% of the initial content) after more than 350 h of work in a continuous flow reactor is a very promising result to develop a catalytic continuous flow process for industrial wastewater purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Luck (1996) Catal Today 27 195

    Google Scholar 

  2. NH. Phu T.T.K. Hoa NV. Tan H.V. Thang PL. Ha (2001) Appl Catal B 34 267 Occurrence Handle1:CAS:528:DC%2BD3MXotFSit78%3D

    CAS  Google Scholar 

  3. H.-Y. Chen El-M El-Malki X. Wang R.A. Santen Particlevan W.M.H. Sachtler (2000) J Mol Cat A 162 159 Occurrence Handle1:CAS:528:DC%2BD3cXovFejt7o%3D

    CAS  Google Scholar 

  4. S. Prasad (1997) Microporous Mater. 12 123 Occurrence Handle1:CAS:528:DyaK2sXmvFeqsbw%3D

    CAS  Google Scholar 

  5. E. Wloch B. Sulikowski R. Dula EM. Serwicka (1996) Coll Surf A 115 257 Occurrence Handle1:CAS:528:DyaK28XlvVChsbo%3D

    CAS  Google Scholar 

  6. J. Barrault M. Abdellaoui C. Bouchoule A. Majesté J.M. Tatibouët A. Louloudi N. Papayannakos NH. Gangas (2000) Appl Catal B Environ. 27 L225 Occurrence Handle1:CAS:528:DC%2BD3cXkslSjsL0%3D

    CAS  Google Scholar 

  7. Chul Wee Lee Dong Hwan Ahn Bo Wang Jin Soo Hwang Sang-Eon Park (2001) Micr Mes Mat. 44 IssueID45 587

    Google Scholar 

  8. Kuang Yueping He Nongyue Wang Jian Xiao Pengfeng Yuan Chunwei Lu. Zuhong (2001) Coll. Surf. A. 179 177

    Google Scholar 

  9. A. Parmaliana F. Arena F. Frusteri A. Martinez-Arias M. Lopez Granados J.L.G. Fierro (2002) Appl Catal A 226 163 Occurrence Handle1:CAS:528:DC%2BD38XhtFyru7k%3D

    CAS  Google Scholar 

  10. AV. Kucherov CN. Montreuil T.N. Kucherova M. Shelef (1998) Catal Lett. 56 173 Occurrence Handle1:CAS:528:DyaK1MXmslSrug%3D%3D

    CAS  Google Scholar 

  11. A.V. Kucherov AM. Shelef (2000) J Catal. 195 106 Occurrence Handle1:CAS:528:DC%2BD3cXms1GntLg%3D

    CAS  Google Scholar 

  12. ML. Kremer (2002) J Inorg Biochem. 78 2

    Google Scholar 

  13. E. Finkelstein G.M. Rosen EJ. Tauckman (1980) Arch Biochem Biophys. 200 1 Occurrence Handle1:CAS:528:DyaL3cXhslKlsLw%3D Occurrence Handle6244786

    CAS  PubMed  Google Scholar 

  14. EG. Janzen (1971) Accounts Chem Res. 4 31 Occurrence Handle1:CAS:528:DyaE3MXlvVOisg%3D%3D

    CAS  Google Scholar 

  15. Janzen EG., in: Free Radicals in Biology, W. Pryor (ed.), Vol. IV (Academic Press, New York, 1980)

  16. E. Finkelstein G.M. Rosen EJ. Rauckman (1980) J Am Chem Soc 102 4994 Occurrence Handle1:CAS:528:DyaL3cXkvFCnuro%3D

    CAS  Google Scholar 

  17. GR. Buettner (1987) Free Radic Biol Med. 3 259 Occurrence Handle1:CAS:528:DyaL1cXhvVGltg%3D%3D Occurrence Handle2826304

    CAS  PubMed  Google Scholar 

  18. V. Kaloidas CA. Koufanapos N.H. Gangas NG. Papayannakos (1995) Microporous Mater. 5 97 Occurrence Handle1:CAS:528:DyaK2MXptFarsL4%3D

    CAS  Google Scholar 

  19. Villermaux J., in: Génie de la réaction chimique-Conception et fonctionnement des réacteurs, (Tec & Doc – Lavoisier, Paris, 1993)

  20. D.T. Sawyer TS. Valentine (1981) Accounts Chem Res 14 393 Occurrence Handle1:CAS:528:DyaL3MXmtFChsL0%3D

    CAS  Google Scholar 

  21. G. Liu J. Zhao H. Hidaka (2000) J Photochem Photobiol A Chem. 133 83 Occurrence Handle1:CAS:528:DC%2BD3cXisV2ms7g%3D

    CAS  Google Scholar 

  22. E. Guélou J. Barrault J. Fournier J.M. Tatibouët (2003) Appl Cat B Environ. 44 1

    Google Scholar 

  23. J. Barrault JM Tatibouët N. Papayannakos (2000) C.R Acad Sci Paris IIc Chemistry 3 777 Occurrence Handle1:CAS:528:DC%2BD3MXptFKltw%3D%3D

    CAS  Google Scholar 

  24. G.R. Buettner LW. Oberley (1978) Biochem Biophys Res Commun. 83 69 Occurrence Handle1:CAS:528:DyaE1cXlt1Gms78%3D Occurrence Handle212052

    CAS  PubMed  Google Scholar 

  25. C. Hadjur G. Wagnières F. Ihringer P. Monnier H. Bergh Particlevan den (1997) J Photochem Photobiol B Biol. 38 196 Occurrence Handle1:CAS:528:DyaK2sXjslKksrs%3D

    CAS  Google Scholar 

  26. M. Pourbaix (1963) Atlas d’équilibres électrochimiques Gauthier-Villars Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Tatibouët.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatibouët, JM., Guélou, E. & Fournier, J. Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Top Catal 33, 225–232 (2005). https://doi.org/10.1007/s11244-005-2531-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-2531-3

Keywords

Navigation