Skip to main content
Log in

Simultaneous efficient adsorption and photocatalytic degradation of methylene blue over iron(III)-based metal–organic frameworks: a comparative study

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Here, we prepared a series of Fe-based metal organic frameworks (MOFs), including MIL-53(Fe), NH2-MIL-53(Fe), MIL-88B(Fe) and NH2-MIL-88B(Fe), via an oil bath process and used them to remove methylene blue under visible light. A comparative study of NH2-MILs and Fe-MILs was conducted. The experimental results showed that the presence of amino groups could improve the adsorption capacities of NH2-MILs, which was attributed to hydrogen bonding interactions and ππ stacking between the amino groups of the dye molecules and the amino-functionalized MOFs. The photocatalytic activities of NH2-MILs under visible light were higher than those of Fe-MILs, owing to the enhancement of visible-light absorption, the decrease in the band gap and the improvement of the adsorption capacity. After several photodegradation experiments, the catalytic activities decreased and could be restored by irradiating the catalysts with ultraviolet light. This study indicated that the amino-functionalized materials had great potential for wastewater treatment and resource utilization.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. Appl Catal B Environ 166:603–643

    Article  Google Scholar 

  2. Tawfik A, Zaki DF, Zahran MK (2014) Degradation of reactive dyes wastewater supplemented with cationic polymer (Organo Pol.) in a down flow hanging sponge (DHS) system. J Ind Eng Chem 20:2059–2065

    Article  CAS  Google Scholar 

  3. Castellanos NJ, Rojas ZM, Camargo HA et al (2019) Congo red decomposition by photocatalytic formation of hydroxyl radicals (·OH) using titanium metal–organic frameworks. Transit Met Chem 44:77–87

    Article  CAS  Google Scholar 

  4. Liu L, Zhang J, Tan Y et al (2014) Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: catalytic mechanism, analysis of products and degradation route. Chem Eng J 244:9–18

    Article  CAS  Google Scholar 

  5. Khansorthong S, Hunsom M (2009) Remediation of wastewater from pulp and paper mill industry by the electrochemical technique. Chem Eng J 151:228–234

    Article  CAS  Google Scholar 

  6. Huo SH, Yan XP (2012) Metal–organic framework MIL-100 (Fe) for the adsorption of malachite green from aqueous solution. J Mater Chem 22:7449–7455

    Article  CAS  Google Scholar 

  7. Feng L, Ren G, Wang F et al (2019) Two bimetallic metal–organic frameworks capable of direct photocatalytic degradation of dyes under visible light. Transit Met Chem 44:275–281

    Article  CAS  Google Scholar 

  8. Meehan C, Bjourson AJ, McMullan G (2001) Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 51:1681–1685

    Article  CAS  Google Scholar 

  9. Jia Y, Jin Q, Li Y et al (2015) Investigation of the adsorption behaviour of different types of dyes on MIL-100 (Fe) and their removal from natural water. Anal Methods 7:1463–1470

    Article  CAS  Google Scholar 

  10. Haque E, Jun JW et al (2011) Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal–organic framework material, iron terephthalate (MOF-235). J Hazard Mater 185:507–511

    Article  CAS  Google Scholar 

  11. Liu H, Ren X, Chen L (2016) Synthesis and characterization of magnetic metal–organic framework for the adsorptive removal of Rhodamine B from aqueous solution. J Ind Eng Chem 34:278–285

    Article  CAS  Google Scholar 

  12. Li JX, Qin ZB, Li YH et al (2018) Sonochemical synthesis and properties of two new nanostructured silver (I) coordination polymers. Ultrason Sonochem 48:127–135

    Article  CAS  Google Scholar 

  13. Hao SY, Li YH, Zhu J et al (2018) Structures, luminescence and photocatalytic properties of two nanostructured cadmium (II) coordination polymers synthesized by sonochemical process. Ultrason Sonochem 40:68–77

    Article  CAS  Google Scholar 

  14. Lee JY, Farha OK, Roberts J et al (2009) Metal–organic framework materials as catalysts. Chem Soc Rev 38:1450–1459

    Article  CAS  Google Scholar 

  15. Yao SL, Liu SJ, Tian XM et al (2019) A ZnII-based metal–organic framework with a rare tcj topology as a turn-on fluorescent sensor for acetylacetone. Inorg Chem 58:3578–3581

    Article  CAS  Google Scholar 

  16. Keskin S, Kızılel S (2011) Biomedical applications of metal organic frameworks. Ind Eng Chem Res 50:1799–1812

    Article  CAS  Google Scholar 

  17. Kumar P, Vellingiri K, Kim KH et al (2017) Modern progress in metal–organic frameworks and their composites for diverse applications. Micropor Mesopor Mater 253:251–265

    Article  CAS  Google Scholar 

  18. Shi L, Wang T, Zhang H et al (2015) An amine-functionalized iron (III) metal–organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Adv Sci 2:1–8

    Article  Google Scholar 

  19. Kang WC, Li YH, Qin ZB et al (2018) Synthesis, structures and characterization of two cobalt (II) coordination polymers with 2,5-dichloroterephthalic acid and flexible bis (benzimidazole) ligands. Transit Met Chem 43:563–570

    Article  CAS  Google Scholar 

  20. Liang R, Chen R, Jing F et al (2015) Multifunctional polyoxometalates encapsulated in MIL-100 (Fe): highly efficient photocatalysts for selective transformation under visible light. Dalton Trans 44:18227–18236

    Article  CAS  Google Scholar 

  21. Laurier KGM, Vermoortele F, Ameloot R et al (2013) Iron (III)-based metal–organic frameworks as visible light photocatalysts. J Am Chem Soc 135:14488–14491

    Article  CAS  Google Scholar 

  22. Tan F, Liu M, Li K et al (2015) Facile synthesis of size-controlled MIL-100 (Fe) with excellent adsorption capacity for methylene blue. Chem Eng J 281:360–367

    Article  CAS  Google Scholar 

  23. Ai L, Zhang C, Li L et al (2014) Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B Environ 148:191–200

    Article  Google Scholar 

  24. Li X, Guo W, Liu Z et al (2016) Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl Surf Sci 369:130–136

    Article  CAS  Google Scholar 

  25. Wang D, Jia F, Wang H et al (2018) Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J Colloid Interface Sci 519:273–284

    Article  CAS  Google Scholar 

  26. Liu Y, Gao P, Huang C et al (2015) Shape-and size-dependent catalysis activities of iron-terephthalic acid metal–organic frameworks. Sci China Chem 58:1553–1560

    Article  CAS  Google Scholar 

  27. Lin S, Song Z, Che G et al (2014) Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Micropor Mesopor Mat 193:27–34

    Article  CAS  Google Scholar 

  28. Du JJ, Yuan YP, Sun JX et al (2011) New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951

    Article  CAS  Google Scholar 

  29. Liu YL, Zhao XJ, Yang XX et al (2013) A nanosized metal–organic framework of Fe-MIL-88NH2 as a novel peroxidase mimic used for colorimetric detection of glucose. Analyst 138:4526–4531

    Article  CAS  Google Scholar 

  30. Alqadami AA, Naushad M, Alothman ZA et al (2018) Adsorptive performance of MOF nanocomposite for methylene blue and malachite green dyes: kinetics, isotherm and mechanism. J Environ Manage 223:29–36

    Article  CAS  Google Scholar 

  31. Naushad M, Za AlOthman, Awual MR et al (2016) Adsorption of rose Bengal dye from aqueous solution by amberlite Ira-938 resin: kinetics, isotherms, and thermodynamic studies. Desalin Water Treat 57:13527–13533

    Article  CAS  Google Scholar 

  32. Li C, Xiong Z, Zhang J et al (2015) The strengthening role of the amino group in metal–organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption. J Chem Eng Data 60:3414–3422

    Article  CAS  Google Scholar 

  33. Liu B, Yang F, Zou Y et al (2014) Adsorption of phenol and p-nitrophenol from aqueous solutions on metal–organic frameworks: effect of hydrogen bonding. J Chem Eng Data 59:1476–1482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was granted financial support from the Henan Province program for science and technology development (16210221247) and the Program of Henan Province Department of Education (15A430053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuxue Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zhang, L., Wang, X. et al. Simultaneous efficient adsorption and photocatalytic degradation of methylene blue over iron(III)-based metal–organic frameworks: a comparative study. Transit Met Chem 44, 789–797 (2019). https://doi.org/10.1007/s11243-019-00349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-019-00349-9

Navigation