Skip to main content
Log in

Kinetics and mechanism of oxidation of pyruvate by permanganate ion in aqueous perchlorate solution

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of permanganate oxidation of pyruvic acid in aqueous perchlorate at a constant ionic strength of 2.0 mol dm−3 have been investigated spectrophotometrically. The pseudo-first-order plots showed two distinct phases for the reaction, characterized as induction and auto-acceleration periods. The induction phase is relatively slow at the early stages of reaction and is followed by a faster process. The rate law for the oxidation was described by the sum of two exponential terms. The oxidation showed overall second-order kinetics with respect to the reactants in the initial slow phase. However, second-order kinetics was not maintained throughout the faster second stage. The effects of added salts lead to the conclusion that Mn(III) and/or Mn(IV) play the main role in the reaction kinetics of the second stage. A reaction mechanism consistent with the kinetic results is suggested and discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Maleki N, Eiteman MA (2017) Fermentation 3:8

    Article  Google Scholar 

  2. Zhang Y, Yao F, Du M, Ma C, Qiu J, Gu L, He X, Xu P (2010) Appl Microbiol Biotechnol 86:481

    Article  CAS  Google Scholar 

  3. Rosche B, Sandford V, Breuer M, Hauer B, Rogers P (2001) Appl Microbiol Biotechnol 57:309

    Article  CAS  Google Scholar 

  4. Reisse S, Haack M, Garbe D, Sommer B, Steffler F, Carsten J, Bohnen F, Sieber V, Bruck T (2016) Front Bioeng Biotechnol 4:74

    Article  Google Scholar 

  5. Stine A, Zhang M, Ro S, Clendennen S, Shelton MC, Tyo KEJ, Broadbelt LJ (2016) Biotechnol Prog 32:303

    Article  CAS  Google Scholar 

  6. Mazzio E, Soliman KF (2003) Neurochem Res 28:733

    Article  CAS  Google Scholar 

  7. Wang X, Perez E, Liu R, Yan J-L, Mallet S-H (2016) Yang Brain Res 1132:1

    Google Scholar 

  8. Yoo MH, Lee JY, Lee SE, Hok JY, Yoon YH (2004) Invest Ophthalnol Visual Sci 45:1523

    Article  Google Scholar 

  9. Borron ESG (1952) Trends in physiology and biochemistry. Academic Press, New York, p 471

    Google Scholar 

  10. Drummond AY, Waters WA (1955) J Chem Soc 497

  11. Littler JS, Phil D, Thesis University of Oxford (1960)

  12. Sen Gupta KK, Chatterjee HR (1978) Inorg Chem 17:2429

    Article  CAS  Google Scholar 

  13. Sen Gupta KK, Sarkar T (1975) Tetrahedron 31:123

    Article  CAS  Google Scholar 

  14. Albory WJ, Bell RP, Powel AL (1965) Trans Farad Soc 61:1194

    Article  Google Scholar 

  15. Miklós J, Ivan VK, Eugen H (1992) Int J Chem Kin 24:1055

    Article  Google Scholar 

  16. Hassan RM, Mousa MA,Wahdan MH (1988) J Chem Soc Dalton Trans 605

  17. Hassan RM (1991) Cand J Chem 69:2018

    Article  CAS  Google Scholar 

  18. Feigi F (1956) Spot test in organic analysis, vol 331. Elsevier, London, p 342

    Google Scholar 

  19. Hicks KW, Hurless MA (1983) Inorg Chim Acta 74:229

    Article  CAS  Google Scholar 

  20. Hassan RM, Wahdan MH, Hassan A (1988) Eurp Poly J 24:281

    Article  CAS  Google Scholar 

  21. Waters WA (1958) Q Rev Chem Soc 12:277–300

    Article  CAS  Google Scholar 

  22. Radhakrishnamuti PS, Rao MD (1977) Ind J Chem Soc A 15:524

    Google Scholar 

  23. Girgis MM, Hassan RM, El-Shahawy AS (1987) Bull Fac Sci Assiut Univ 16:41–47

    CAS  Google Scholar 

  24. Nath P, Banerji KK, Bakore GV (1970) Bull Chem Soc JP 43:2027

    Article  Google Scholar 

  25. Laidler K (1965) Chemical Kinetics. McGraw-Hill, New York

    Google Scholar 

  26. Cornforth JW, Popjak G (1949) Nature 164:1053

    Article  CAS  Google Scholar 

  27. Curley K, Pratt RF (1997) J Org Chem 62:4479

    Article  CAS  Google Scholar 

  28. Bally N, Carrington A, Lott KAK, Symons MCR (1960) J Chem Soc 290–297

  29. Glasstone S, Laidler KJ, Eyring H (1941) Theory of rate processes. McGraw-Hill Book Company, New York, p 417

    Google Scholar 

  30. Millazzo GH, Caroll S, Sharma VK (1978) Tables of standard potentials. Wiley, New York

    Google Scholar 

  31. Latimer W (1952) Oxidation potentials, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  32. Marcus RA (1968) J Phys Chem 72:891

    Article  CAS  Google Scholar 

  33. Hicks KW (1976) J Inorg Nucl Chem 38:1381

    Article  CAS  Google Scholar 

  34. Hassan RM (2011) J Phys Chem 115:13338

    Article  CAS  Google Scholar 

  35. Michaelis L, Menten ML (1913) Biochem Z 49:333

    CAS  Google Scholar 

  36. Girgis MM, El-Shatoury SA, Khalil ZH (1985) Cand J Chem 63:3317

    Article  CAS  Google Scholar 

  37. Sen Gupta KK, Khamrui DK, Mukherjee DC (1975) Ind J Chem 13:348.34

    Google Scholar 

  38. Bakore GV, Shanker R (1963) Ind J Chem 1:108

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt. The authors would like to thank all staff members of Chemistry Department for their continuous encouragement throughout performing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refat M. Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, R.M., Ibrahim, S.M. & Khairou, K.S. Kinetics and mechanism of oxidation of pyruvate by permanganate ion in aqueous perchlorate solution. Transit Met Chem 43, 683–691 (2018). https://doi.org/10.1007/s11243-018-0257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0257-x

Navigation