Skip to main content
Log in

Mechanistic and kinetic study of the formation of silver nanoparticles by reduction of silver(I) in the presence of surfactants and macromolecules

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of formation of silver nanoparticles by reduction of silver(I) with galactose were studied spectrophotometrically in the presence of surfactants and chitosan as stabilizing agents. The reaction was carried out under pseudo-first-order conditions by using a tenfold excess of [galactose] over [Ag+]. The effects of cetyltrimethylammonium bromide (cationic surfactant) and sodium dodecyl sulfate (anionic surfactant) on the reaction rate have been studied. Chitosan inhibits the rate of reaction by up to 70 %. TEM imaging shows that there is no aggregation of silver nanoparticles in the presence of chitosan. The rate of reaction increases with increasing [OH]. A mechanism for the reaction is proposed, and the rate equation derived from this mechanism was consistent with the experimental behaviors. Thermodynamic activation parameters were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hettiarachchi MA, Wickramarachchi PASR (2011) J Sci Univ Kelaniya 6:65

    Google Scholar 

  2. Kumar B, Smita K, Cumbal L, Debut A, Pathak R (2014) Bioinorg Chem Appl 21:605

    CAS  Google Scholar 

  3. Onishi H, Machida Y (1999) Biomaterials 20:175

    Article  CAS  Google Scholar 

  4. Yanga J, Shibb I, Tzengc Y, Wang S (2000) Enzyme Microb Technol 26:406

    Article  Google Scholar 

  5. Khan TA, Peh KK, Chng HS (2002) J Pharm Sci 5:205

    CAS  Google Scholar 

  6. Jigar MJ, Sinha VK (2007) Carbohydr Polym 67:427

    Article  Google Scholar 

  7. Cho YW, Cho YN, Chung SH, Ko W (1999) Biomaterials 20:2139

    Article  CAS  Google Scholar 

  8. Khor E, Lim LY (2003) Biomaterials 24:2339

    Article  CAS  Google Scholar 

  9. Crini G (2006) Bioresour Technol 97:1061

    Article  CAS  Google Scholar 

  10. Jayakumar R, Menon D, Manzoor K, Nair SV (2010) Carbohydr Polym 82:227

    Article  CAS  Google Scholar 

  11. Khan Z, Al-Thabati SA, Obaid AY, Al-Youbi AO (2010) Colloid Surf B Biointerface 78:143

    Google Scholar 

  12. Hanglein A (1998) Chem Mater 10:444

    Article  Google Scholar 

  13. Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Mater Chem Phys 94:148

    Article  CAS  Google Scholar 

  14. Kapoor S, Lawless D, Kennepohl P, Meisel D, Serpone N (1994) Langmuir 10:3018

    Article  CAS  Google Scholar 

  15. Anil-Kumar S, Abyanesh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmed M, Khan MI (2007) Biotechnol Lett 29:439

    Article  CAS  Google Scholar 

  16. Schultz DA (2003) Curr Opin Biotech 14:13

    Article  CAS  Google Scholar 

  17. Eigenheer R, Castellance ER, Nakamoto MY, Gerner KT, Lampe AM, Wheeler KE (2014) Environ Sci NANO 1:238

    Article  CAS  Google Scholar 

  18. Sharma VK, Yngard RA, Lin Y (2009) Adv Colloid Interface Sci 145:83

    Article  CAS  Google Scholar 

  19. Wigginton NS, de Titta A, Piccapietra F, Dobias J, Nesatyy VJ, Suter MJF, Bernier-Latmani R (2010) Environ Sci Technol 44:2163

    Article  CAS  Google Scholar 

  20. Esumi K, Hosoyo T, Yamahira A, Torigoe K (2000) J Colloid Interface Sci 226:346

    Article  CAS  Google Scholar 

  21. Henglein A (1993) J Phys Chem 97:5457

    Article  CAS  Google Scholar 

  22. Heinzman SW, Gamen B (1982) J Am Chem Soc 104:6801

    Article  CAS  Google Scholar 

  23. Kabir-ud-Din A, Morshed AM, Khan Z (2002) Carbohydr Res 337:1573

    Article  CAS  Google Scholar 

  24. Bunton CA, Savelli G (1986) Adv Phys Org Chem 22:213

    CAS  Google Scholar 

  25. Bunton CA (1997) J Mol Liq 72:231

    Article  CAS  Google Scholar 

  26. Tan Y, Li Y, Zhu D (2003) J Colloid Interface Sci 258:244

    Article  CAS  Google Scholar 

  27. Hanglein A (1998) Chem Mater 10:444

    Article  Google Scholar 

  28. Brackman JC, Engberts JBFN (1991) Langmuir 7:2097

    Article  CAS  Google Scholar 

  29. Wang W, Wang J, Sun P, Yuan Z, Ding D, Chen T (2008) Mater Lett 62:711

    Article  CAS  Google Scholar 

  30. El-Shishtawy RM, Asiri AM, Al-Otabi MM (2011) Spectrochim Acta A 79:1505

    Article  CAS  Google Scholar 

  31. Mukherjee M, Mahapatra A (2009) Colloid Surf A Phys Chem Eng Asp 350:1

    Article  CAS  Google Scholar 

  32. Scott SL, Bakac A, Espenson JH (1992) J Am Chem Soc 114:4205

    Article  CAS  Google Scholar 

  33. Odebunmi EO, Owalude SO (2007) Appl Sci Environ Manag 11:95

    Google Scholar 

Download references

Acknowledgments

This Project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (248/130/1434). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Ewais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, I.M., Ewais, H.A. Mechanistic and kinetic study of the formation of silver nanoparticles by reduction of silver(I) in the presence of surfactants and macromolecules. Transition Met Chem 40, 371–378 (2015). https://doi.org/10.1007/s11243-015-9926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-9926-1

Keywords

Navigation