Skip to main content
Log in

Kinetic and mechanistic studies of cisplatin analogues bearing 2,2′-dipyridylalkylamine ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of mononuclear Pt(II) complexes of the type diaqua(2,2′-dipyridylalkylamine)platinum(II) (where the alkyl group = methyl, ethyl, propyl, butyl or hexyl) were synthesized to investigate their nucleophilic substitution behaviour and the influence of the alkyl chain bonded to the tertiary nitrogen atom joining the two pyridine rings on the reactivity of the chosen complexes. The trend in rate constant shows that introduction of the σ-donating alkyl chain on the tertiary nitrogen joining the two pyridine moieties reduces the π-acceptor ability of the cis coordinated pyridine rings resulting in a less reactive Pt(II) centre which causes a decrease in the reaction rate. This is well supported by data from DFT calculations. It is also evident that the alkyl chain also introduces a steric effect which blocks the approach of the nucleophile to the Pt(II) centre. The boat-like structure of the six-membered chelate ring also contributes to the steric effect. The study has also shown that two substitution processes going through an associative mode of activation are observed. The first is the simultaneous substitution of the two aqua ligands, and the second is due to the dechelation of the ligand, an indication of possible disintegration of the complex if used as a drug.

Graphical Abstract

The substitution reactions of cisplatin analogues and bio-relevant thiourea nucleophiles follow two-step associative processes with the last step encountering a complete dechelation of the ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8

Similar content being viewed by others

References

  1. Bose D, Rahaman SH, Mostafa G, Walsh RDB, Zaworotko MJ, Ghosh BK (2004) Polyhedron 23:545

    Article  CAS  Google Scholar 

  2. Rahaman SH, Bose D, Chowdhury H, Mostafa G, Fun H-K, Ghosh BK (2005) Polyhedron 24:1837

    Article  CAS  Google Scholar 

  3. Camus A, Marsich N, Lanfredi AMM, Ugozzoli F, Massera C (2000) Inorg Chim Acta 309:1

    Article  CAS  Google Scholar 

  4. Cotton FA, Daniels LM, Jordan GT, Murillo CA (1997) J Am Chem Soc 119:10377

    Article  CAS  Google Scholar 

  5. Yang E-C, Cheng M-C, Tsai M-S, Peng S-M (1994) Chem Commun 20:2377

    Article  Google Scholar 

  6. Youngme S, Chailuecha C, van Albada GA, Pakawatchai C, Chaichit N, Reedijk J (2005) Inorg Chim Acta 358:1068

    Article  CAS  Google Scholar 

  7. Sletten J, Svardal K, Sørensen A (1993) Acta Chem Scand 47:1091

    Article  CAS  Google Scholar 

  8. Paul AK, Mansuri-Torshizi H, Srivastava TS, Chavan SJ, Chitnis MP (1993) J Inorg Biochem 50:9

    Article  CAS  Google Scholar 

  9. Yodoshi M, Okabe N (2008) Chem Pharm Bull 56:908

    Article  CAS  Google Scholar 

  10. Fakih S, Tung WC, Eierhoff D, Mock C, Krebs B (2005) Z Anorg Allg Chem 631:1397

    Article  CAS  Google Scholar 

  11. Grehl M, Krebs B (1994) Inorg Chem 33:3877

    Article  CAS  Google Scholar 

  12. Puscasu I, Mock C, Rauterkus M, Röndigs A, Tallen G, Gangopadhyay S, Wolff JEA, Krebs B (2001) Z Anorg Allg Chem 627:1292

    Article  CAS  Google Scholar 

  13. Bloemin MJ, Engelking H, Gütschow N, Karentzopoulos S, Krebs B, Reedijk J (1995) J Inorg Biochem 59:222

    Article  Google Scholar 

  14. Rauterkus MJ, Fakih S, Mock C, Puscasu I, Krebs B (2003) Inorg Chim Acta 350:355

    Article  CAS  Google Scholar 

  15. Mock C, Puscasu I, Rauterkus MJ, Tallen G, Wolff JEA, Krebs B (2001) Inorg Chim Acta 319:109

    Article  CAS  Google Scholar 

  16. Bloemink MJ, Engelking H, Karentzopoulos S, Krebs B, Reedijk J (1996) Inorg Chem 35:619

    Article  CAS  Google Scholar 

  17. Gangopadhyay SB, Röndigs A, Kangarloo SB, Krebs B, Wolff JEA (2001) Anticancer Res 21:2039

    CAS  Google Scholar 

  18. Tallen G, Mock C, Gangopadhyay SB, Kangarloo B, Krebs B, Wolff JEA (2000) Anticancer Res 20:445

    CAS  Google Scholar 

  19. Bogojeski J, Bugarčić ŽD, Puchta R, van Eldik R (2010) Eur J Inorg Chem 34:5439

    Article  Google Scholar 

  20. Jovanović S, Petrović B, Čanović D, Bugarčić ŽD (2011) Int J Chem Kinet 43:99

    Article  Google Scholar 

  21. Hochreuther S, Nandibewoor ST, Puchta R, van Eldik R (2012) Dalton Trans 41(2):512

    Article  CAS  Google Scholar 

  22. Summa N, Schiessl W, Puchta R, van Eikema Hommes N, van Eldik R (2006) Inorg. Chem 45:2948

    CAS  Google Scholar 

  23. Soldatović T, Bugarčić ŽD, van Eldik R (2009) Dalton Trans 23:4526

    Article  Google Scholar 

  24. Schreier S, Malheiros SVP, de Paula E (2000) Biochim Biophys Acta-Biomembr 1508:210

    Article  CAS  Google Scholar 

  25. Murray SG, Hartley FR (1981) Chem Rev 81:365

    Article  CAS  Google Scholar 

  26. Reedijk J (1999) Chem Rev 99:2499

    Article  CAS  Google Scholar 

  27. Schiessl WC, Summa NK, Weber CF, Gubo S, Dücker-Benfer C, Puchta R, van Eikema Hommes NJR, van Eldik R (2005) Z Anorg Allg Chem 631:2812

    Article  CAS  Google Scholar 

  28. Ashby MT (1990) Comments Inorg Chem 10:297

    Article  CAS  Google Scholar 

  29. Origin7.5®™ SRO, v7.5714 (B5714), Origin Lab Corporation, Northampton, One, Northampton, MA, 01060, 2003

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Revision A.1 Gaussian, Inc., Wallingford, CT. http://akira.ruc.dk/~spanget/help/g09/m_citation.htm

  31. Becke AD (1997) J Chem Phys 107:8554

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr GR (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157:200

    Article  CAS  Google Scholar 

  34. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  35. Soldatović T, Jovanović S, Bugarčić ŽD, van Eldik R (2012) Dalton Trans 41(3):876

    Article  Google Scholar 

  36. Mambanda A, Jaganyi D (2012) Dalton Trans 41:908

    Article  CAS  Google Scholar 

  37. Hofmann A, van Eldik R (2003) Dalton Trans 15:2979

    Article  Google Scholar 

  38. Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688

    Article  CAS  Google Scholar 

  39. Kumar L, Srivastava TS (1983) Inorg Chim Acta 80:47

    Article  CAS  Google Scholar 

  40. Kidani Y, Asano Y, Noji M (1979) Chem Pharm Bull 27:2577

    Article  CAS  Google Scholar 

  41. Dehand J, Jordanov J (1976) J Chem Soc Chem Comm 15:598

    Article  Google Scholar 

  42. Howell BA, Walles E (1988) Inorg Chim Acta 142:185

    Article  CAS  Google Scholar 

  43. Mebi CA (2011) J Chem Sci 123(5):727

    Article  CAS  Google Scholar 

  44. Espenson JH (1995) Chemical kinetics and reaction mechanisms, 2nd edn. New York, McGraw-Hill

    Google Scholar 

  45. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  46. Fazlur-Rahman AK, Verkade JG (1992) Inorg Chem 31:2064

    Article  CAS  Google Scholar 

  47. Priqueler JRL, Butler IS, Rochon FD (2006) Appl Spectrosc Rev 41:185

    Article  CAS  Google Scholar 

  48. Ma G, Min Y, Huang F, Jiang T, Liu Y (2010) Chem Commun (Camb) 46(37):6938

    Article  CAS  Google Scholar 

  49. Crossley EL, Caiazza D, Rendina LM (2005) Dalton Trans 17:2825

    Article  Google Scholar 

  50. Todd JA, Rendina LM (2002) Inorg Chem 41:3331

    Article  CAS  Google Scholar 

  51. Norman RE, Ranford JD, Sadler PJ (1992) Inorg Chem 31:877

    Article  CAS  Google Scholar 

  52. Todd JA, Caiazza D, Tiekink ERT, Rendina LM (2003) Inorg Chim Acta 352:208

    Article  CAS  Google Scholar 

  53. Appleton TG, Connor JW, Hall JR, Prenzler PD (1989) Inorg Chem 28:2030

    Article  CAS  Google Scholar 

  54. Grant GJ, Brandow CG, Galas DF, Davis JP, Pennington WT, Valente EJ, Zubkowski JD (2001) Polyhedron 20:3333

    Article  CAS  Google Scholar 

  55. Jaganyi D, Ongoma P (2013) Dalton Trans 42:2724

    Article  Google Scholar 

  56. Ertürk H, Puchta R, van Eldik R (2009) Eur J Inorg Chem 10:1331

    Article  Google Scholar 

  57. Salzner U, Kızıltepe T (1999) J Org Chem 64:764

    Article  CAS  Google Scholar 

  58. Kistler KA, Matsika S (2007) J Phys Chem A 111:8708

    Article  CAS  Google Scholar 

  59. Mburu E, Matsika S (2008) J Phys Chem A 112:12485

    Article  CAS  Google Scholar 

  60. Singh RK, Verma SK, Sharma PD (2011) Int J ChemTech Res 3(3):1571

    CAS  Google Scholar 

  61. Das M, Livingstone SE (1975) J Chem Soc Dalton Trans 452

  62. Mittal SK, Kumar P, Ashok Kumar SK, Lindoy LF (2010) Int J Electrochem Sci 5:1984

    CAS  Google Scholar 

  63. Shepherd RE, Chen Y, Kortes RA, Ward MS (2000) Inorg Chim Acta 303:30

    Article  CAS  Google Scholar 

  64. Jaganyi D, Ongoma P (2012) Dalton Trans 41:10724

    Article  Google Scholar 

  65. Jaganyi D, Tiba F (2003) Transit Met Chem 28:803

    Article  CAS  Google Scholar 

  66. Jaganyi D, Reddy D, Gertenbach JA, Mzunro OQ and van Eldik R (2004) Dalton Trans 299

  67. Bruice PY (1998) Organic chemistry, 2nd edn. Prentice Hall, New York, pp 363–366

    Google Scholar 

  68. Tobe ML, Burgess J (1999) Inorganic reaction mechanisms. Addison-Wiley, Longman, Ltd.: Essex, 1999, pp. 30–33, 70–112

Download references

Acknowledgments

The authors thank the University of Dar es Salaam (Tanzania) and University of KwaZulu–Natal (South Africa) for financial support to Grace Kinunda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deogratius Jaganyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOC 2448 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinunda, G., Jaganyi, D. Kinetic and mechanistic studies of cisplatin analogues bearing 2,2′-dipyridylalkylamine ligands. Transition Met Chem 41, 235–248 (2016). https://doi.org/10.1007/s11243-015-0015-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-0015-2

Keywords

Navigation