Skip to main content
Log in

Zero-, one- and two-dimensional bis-triazole-bis-amide-based copper(II) complexes tuned by polycarboxylates with different protonation degrees: assembly, structures and properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three bis-triazole-bis-amide-based copper(II) complexes with different dimensionality, [Cu(dtcd)2 (1,3-HBDC)2]·2H2O (1), [Cu(dtcd) (1,3,5-H2BTC)2]·2H2O (2) and [Cu4(μ 3-OH)2(dtcd)2(SIP)2]·4H2O (3) (dtcd = N,N′-di(4H-1,2,4-triazole) cyclohexane-1,4-dicarboxamide, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, NaH2SIP = sodium 5-sulfoisophthalate), have been synthesized under different pH values and structurally characterized. Complex 1 exhibits a zero-dimensional mononuclear structure with one carboxyl group of 1,3-HBDC coordinating to copper(II), while the other carboxyl group is protonated. In complex 2, the CuII ions are bridged by the dtcd ligands forming a one-dimensional chain, in which only one carboxyl group of 1,3,5-H2BTC coordinates with the metal, while the others are protonated. Complex 3 possesses a two-dimensional network based on tetranuclear Cu4 clusters supported by the dtcd and nonprotonated SIP ligands. The various structures clearly indicate that the pH and polycarboxylates have a great influence on the dimensionality and structures of 13. The luminescence properties of 13 and magnetic properties of 3 were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holliday BJ, Mirkin CA (2001) Angew Chem Int Ed 40:2022–2043

    Article  CAS  Google Scholar 

  2. Zhang JP, Chen XM (2009) J Am Chem Soc 131:5516–5521

    Article  CAS  Google Scholar 

  3. O’ Keeffe M, Yaghi OM (2012) Chem Rev 112:675–702

    Article  Google Scholar 

  4. Yoon M, Srirambalaji R, Kim K (2012) Chem Rev 112:1196–1231

    Article  CAS  Google Scholar 

  5. Wu CD, Hu A, Zhang L, Lin W (2005) J Am Chem Soc 127:8940–8941

    Article  CAS  Google Scholar 

  6. Liu T, Liu Y, Xuan W, Cui Y (2010) Angew Chem Int Ed 49:4121–4124

    Article  CAS  Google Scholar 

  7. Sun JK, Li W, Cai LX, Zhang J (2011) CrystEngComm 13:1550–1556

    Article  CAS  Google Scholar 

  8. Pachfule P, Das R, Poddar P, Banerjee R (2011) Inorg Chem 50:3855–3865

    Article  CAS  Google Scholar 

  9. Yang JX, Zhang X, Cheng JK, Zhang J, Yao YG (2012) Cryst Growth Des 12:333–345

    Article  CAS  Google Scholar 

  10. Qin L, Hu JS, Li YZ, Zheng HG (2012) Cryst Growth Des 12:403–413

    Article  CAS  Google Scholar 

  11. Mu YJ, Han G, Li Z, Liu XT, Hou HW, Fan YT (2012) Cryst Growth Des 12:1193–1200

    Article  CAS  Google Scholar 

  12. Samai S, Biradha K (2011) Cryst Growth Des 11:5723–5732

    Article  CAS  Google Scholar 

  13. Robin AY, Fromm KM (250) Coord Chem Rev 250:2127–2157

    Article  Google Scholar 

  14. Patra R, Titi HM, Goldberg I (2013) New J Chem 37:1494–1500

    Article  CAS  Google Scholar 

  15. Schranz I, Lief GR, Carrow CJ, Haagenson DC, Grocholl L, Stahl L, Staples RJ, Boomishankar R, Steiner A (2005) Dalton Trans 34:3307–3318

    Article  Google Scholar 

  16. Schädle D, Schadle C, Törnroos KW, Anwander R (2012) Organometallics 31:5101–5107

    Article  Google Scholar 

  17. Adarsh NN, Sahoo P, Dastidar P (2010) Cryst Growth Des 10:4976–4986

    Article  CAS  Google Scholar 

  18. Hsu YF, Lin CH, Chen JD, Wang JC (2008) Cryst Growth Des 8:1094–1096

    Article  CAS  Google Scholar 

  19. Cheng JJ, Chang YT, Wu CJ, Hsu YF, Lin CH, Proserpio DM, Chen JD (2012) Cryst EngComm 14:537–543

    Article  CAS  Google Scholar 

  20. Pan FF, Wu J, Hou HW, Fan YT (2010) Cryst Growth Des 10:3835–3837

    Article  CAS  Google Scholar 

  21. Wu J, Hou HW, Guo YX, Fan YT, Wang X (2009) Eur J Inorg Chem 19:2796–2803

    Article  Google Scholar 

  22. Singh AP, Ali A, Gupta R (2010) Dalton Trans 39:8135–8138

    Article  CAS  Google Scholar 

  23. Wang XL, Mu B, Lin HY, Yang S, Liu GC, Tian AX, Zhang JW (2012) Dalton Trans 41:11074–11084

    Article  CAS  Google Scholar 

  24. Wang XL, Lin HY, Mu B, Tian AX, Liu GC, Hu (2011) NH Cryst Eng Comm 13:1990–1997

    Article  CAS  Google Scholar 

  25. Lin HY, Mu B, Wang XL, Tian AX (2012) J Organomet Chem 702:36–44

    Article  CAS  Google Scholar 

  26. Wang XL, Mu B, Lin HY, Liu GC (2011) J Organomet Chem 696:2313–2321

    Article  CAS  Google Scholar 

  27. Lu QL, Zhao W, Zhang JW, Wang XL, Luan J (2013) Z Anorg Allg Chem 693:587–591

    Article  Google Scholar 

  28. Rajput L, Singha S, Biradha K (2007) Cryst Growth Des 7:2788–2795

    Article  CAS  Google Scholar 

  29. Sarkar M, Biradha K (2006) Cryst Growth Des 6:202–208

    Article  CAS  Google Scholar 

  30. Sun SS, Lees AJ, Zavalij PY (2003) Inorg Chem 42:3445–3453

    Article  CAS  Google Scholar 

  31. Sheldrick GM (2008) Acta Cryst A 64:112–122

    Article  CAS  Google Scholar 

  32. Mu Y, Fu J, Song Y, Li Z, Hou H, Fan Y (2011) Cryst Growth Des 11:2183–2193

    Article  CAS  Google Scholar 

  33. Zhang CX, Zhang YY, Sun YQ (2010) Polyhedron 29:1387–1392

    Article  CAS  Google Scholar 

  34. Wang XL, Zhang JX, Liu GC, Lin HY, Chen YQ, Kang ZH (2011) Inorg Chim Acta 368:207–215

    Article  CAS  Google Scholar 

  35. Wang XL, Bi YF, Lin HY, Liu GC (2006) Cryst Growth 6:1086–1091

    Article  Google Scholar 

  36. Guo XD, Zhu GS, Sun FX, Li ZY, Zhao XJ, Li XT, Wang HC, Qiu SL (2006) Inorg Chem 45:2581–2587

    Article  CAS  Google Scholar 

  37. Guo XD, Zhu GS, Li ZY, Chen Y, Li XT, Qiu SL (2006) Inorg Chem 45:4065–4070

    Article  CAS  Google Scholar 

  38. Zhang XM, Tong ML, Gong ML, Chen XM (2003) Eur J Inorg Chem 1:138–142

    Article  Google Scholar 

  39. Zhang LY, Liu GF, Zheng SL, Ye BH, Zhang XM, Chen XM (2003) Eur J Inorg Chem 16:2965–2971

    Article  Google Scholar 

  40. Reinoso S, Vitoria P, G.-Zorrilla JM, Lezama L, Madariaga JM, Felices LS (2007) Inorg Chem 46:4010–4021

    Article  CAS  Google Scholar 

  41. Yang EC, Liu ZY, Wu XY, Chang H, Wang EC, Zhao XJ (2011) Dalton Trans 40:10082–10089

    Article  CAS  Google Scholar 

  42. Liu ZY, Chu J, Ding B, Zhao XJ, Yang EC (2011) Inorg Chem Commun 14:925–928

    Article  CAS  Google Scholar 

  43. Yang EC, Yang YL, Liu ZY, Liu KS, Wu XY, Zhao XJ (2011) Cryst Eng Comm 13:2667–2673

    Article  CAS  Google Scholar 

  44. Yang EC, Ding B, Liu ZY, Yang YL, Zhao XJ (2012) Cryst Growth Des 12:1185–1192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (NCET-09-0853), the National Natural Science Foundation of China (Nos. 21171025 and 21201021) and the Program of Innovative Research Team in University of Liaoning Province (LT2012020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Li Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2013_9755_MOESM1_ESM.doc

Supplementary material 1 (DOC 2269 kb) X-ray crystallographic file (CIF); selected bond distances and angles, structural figures for the title complexes, magnetization curve of 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XL., Zhao, W., Hou, JL. et al. Zero-, one- and two-dimensional bis-triazole-bis-amide-based copper(II) complexes tuned by polycarboxylates with different protonation degrees: assembly, structures and properties. Transition Met Chem 38, 827–833 (2013). https://doi.org/10.1007/s11243-013-9755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9755-z

Keywords

Navigation