Skip to main content
Log in

Substitution reactions in dinuclear platinum(II) complexes: an evaluation of the influence of the diazine-bridging ligand on reactivity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A kinetic study of aqua substitution in dinuclear Pt(II) complexes, [{cis-Pt(OH2)(NH3)2}2-μ-pmn](ClO4)2 (pmn), [{cis-Pt(OH2)(NH3)2}2-μ-pdn](ClO4)2 (pdn), [{cis-Pt(OH2)(NH3)2}2-μ-qzn](ClO4)2 (qzn), [{cis-Pt(OH2)(NH3)2}2-μ-pht](ClO4)2 (pht) and [{cis-Pt(OH2)(NH3)2}2-μ-pzn](ClO4)2 (pzn) (pmn = pyrimidine, pdn = pyridazine, qzn = quinazoline, pht = phthalazine, pzn = pyrazine) by different sulphur-donor nucleophiles, thiourea (TU), N,N–dimethylthiourea (DMTU) and N,N,N,N–tetramethylthiourea (TMTU) was carried out. The reactions were followed under pseudo-first-order conditions as a function of nucleophile concentration and temperature using stopped-flow and UV–Vis spectrophotometric methods. The reactivity of the nucleophiles follows the order TU > DMTU > TMTU. The general order of reactivity for the aqua complexes follows pzn > qzn > pmn > pdn > pht which is confirmed by the obtained pK a values and the quantum chemical calculated NBO charges at the metal centre. The negative values reported for the activation entropy confirm the associative nature of the substitution process. The results demonstrate the strong connection between structural and electronic characteristics of the diazine-bridging ligand and reactivity of the dinuclear Pt(II) complexes.

Graphical Abstract

The substitution behaviour of the cis-[{Pt(NH3)2H2O}2-µ-(NN)]4+ complexes is presented, and the trend in reactivity towards S-donor nucleophiles is significantly influenced by the relative disposition of the two Pt(II) centres and, in part, to π-resonance effect of diazine-bridging ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wheate NJ, Collins JG (2003) Coord Chem Rev 241:133

    Article  CAS  Google Scholar 

  2. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611

    Article  CAS  Google Scholar 

  3. Van der Schilden K, Garcia F, Kooijman H, Spek AL, Haasnoot JG, Reedijk J (2004) Angew Chem Int Educ 43:5668

    Article  Google Scholar 

  4. Oehlsen ME, Qu Y, Farrell N (2003) Inorg Chem 42:5498

    Article  CAS  Google Scholar 

  5. Farrell N (2000) In: Kelland LR, Farrell N (eds) Platinum-based drugs in cancer therapy. Human Press, Totowa, p 321

  6. McGregor TD, Balcarova Z, Qu Y, Tran MC, Zaludova R, Brabec V, Farrell N (1999) J Biol Inorg Chem 77:43

    CAS  Google Scholar 

  7. Fan D, Yang X, Wang X, Zhang S, Mao J, Ding J, Lin L, Guo Z (2007) J Biol Inorg Chem 12:655

    Article  CAS  Google Scholar 

  8. Kasparkova J, Vrana O, Farrell N, Brabec V (2004) J Inorg Biochem 98:1560

    Article  CAS  Google Scholar 

  9. Liu Q, Qu Y, van Antwerpen R, Farrell N (2006) Biochemistry 45:4248

    Article  CAS  Google Scholar 

  10. Jaganyi D, Munisamy VM, Reddy D (2006) Int J Chem Kinet 38:202

    Article  CAS  Google Scholar 

  11. Zhao YM, He WJ, Shi PF, Zhu JH, Qiu L, Lin LP, Guo ZJ (2006) Dalton Trans, 2617

  12. Komeda S, Lutz M, Spek AL, Chikuma M, Reedijk J (2000) Inorg Chem 39:4230

    Article  CAS  Google Scholar 

  13. Komeda S, Lutz M, Spek AL, Yamanaka Y, Sato T, Chikuma M, Reedijk J (2002) J Am Chem Soc 124:4738

    Article  CAS  Google Scholar 

  14. Reddy D, Jaganyi D (2011) Int J Chem Kinet 43:161

    Article  CAS  Google Scholar 

  15. Hofmann A, van Eldik R (2003) Dalton Trans, 2979

  16. Ertürk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans, 2295

  17. Ertürk H, Maigut J, Puchta R, van Eldik R (2008) Dalton Trans, 2759

  18. Ertürk H, Puchta R, van Eldik R (2009) Eur J Inorg Chem, 1334

  19. Mambanda A, Jaganyi D, Hochreuther S, van Eldik R (2010) Dalton Trans 39:3595

    Article  CAS  Google Scholar 

  20. Bonnet S, Siegler MA, van Lenthe JH, Lutz M, Spek AL, van Koten G, Klein Gebbink RJM (2010) Eur J Inorg Chem. doi:10.1002/ejic.201000448

  21. Sutton JE, Taube H (1981) Inorg Chem 20:3126

    Google Scholar 

  22. Dembinski R, Bartik T, Bartik B, Jaeger M, Gladysz J (2000) J Am Chem Soc 122:810

    Article  CAS  Google Scholar 

  23. Romeo R, Plutino MR, Scolaro ML, Stoccoro S, Minghetti G (2000) Inorg Chem 39:4749

    Article  CAS  Google Scholar 

  24. Ongoma OP, Jaganyi D (2013) Dalton Trans 42:2724

    Article  CAS  Google Scholar 

  25. Williams JW, Qu Y, Bulluss GH, Alvorado E, Farrell N (2007) Inorg Chem 46:5821

    Google Scholar 

  26. Summa N, Maigut J, Puchta R, van Eldik R (2007) Inorg Chem 46:2094

    Article  CAS  Google Scholar 

  27. Soldatović T, Jovanović Bugarčić ŽD, van Eldik R (2012) Dalton Trans 41:876

    Article  Google Scholar 

  28. Vacchina V, Torte L, Allievi C, Lobeinski R (2003) J Anal Atomic Spectrom 18:884

    Article  CAS  Google Scholar 

  29. Hoseini SJ, Nabavizadeh SM, Jamali S, Rashidi M (2007) J Organomet Chem 692:1990

    Article  Google Scholar 

  30. Budagumpi S, Kurdekar GS, Kulkarni NV, Revankar VK (2010) J Incl Phenom Macrocyl Chem 67:271

    Article  Google Scholar 

  31. Nédélec N, Rochon FD (2001) Inorg Chem 40:5236

    Article  Google Scholar 

  32. Gardner JS, Strommen DP (2003) J Phys Chem 107:351

    Article  CAS  Google Scholar 

  33. Rochon FD, Fakhfakh M (2009) Inorg Chim Acta 362:1455

    Article  CAS  Google Scholar 

  34. Donghi D, D’Alfonso G, Mauro M, Panigati M, Mercandelli P, Sironi A, Mussini P, D’Alfonso L (2008) Inorg Chem 47:4243

    Article  CAS  Google Scholar 

  35. Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon, Oxford

    Google Scholar 

  36. Kalayda GV, Komeda S, Ikeda K, Sato T, Chikuma M, Reedijk J (2003) Eur J Inorg Chem, 4347

  37. Microcal™ Origin™ (1991–2003) Version 7.5, Microcal Software, Inc. One Roundhouse Plaza, Northampton, MA, 01060, USA

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  40. Bugarčić ZD, Liehr G, van Eldik R (2002) J Chem Soc Dalton Trans, 951

  41. Bugarčič ZD, Petrović BV, Jelić R (2001) Transit Met Chem 26:668

    Article  Google Scholar 

  42. Appleton TG, Hall JR, Ralph SF, Thompson CSM (1984) Inorg Chem 23:3521

    Article  CAS  Google Scholar 

  43. Komeda S, Kalayda GV, Lutz M, Spek AL, Yamanaka Y, Sato T, Chikuma M, Reedijk J (2003) J Med Chem 46:1210

    Article  CAS  Google Scholar 

  44. Willermann M, Ulcahy C, Sigel RKO, Cerdià MM, Freisinger E, Sanz Miguel PJ, Roitzsch M, Lippert B (2006) Inorg Chem 46:2093

    Article  Google Scholar 

  45. Chatterjee S, Krause JA, Oliver AG, Connick WB (2010) Inorg Chem 49:9798

    Article  CAS  Google Scholar 

  46. Katrityzky AR, Ramsden CA, Joule JA, Zhdankin VV (2010) Handbook of heterocyclic chemistry, 3rd edn. Elsevier, UK, pp 17–20

    Google Scholar 

  47. Hofmann A, Dahlernburg L, van Eldik R (2003) Inorg Chem 42:6528

    Article  CAS  Google Scholar 

  48. Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Educ 40:1680

    Article  CAS  Google Scholar 

  49. Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688

    Article  CAS  Google Scholar 

  50. McGowan G, Parsons S, Sadler PJ (2005) Inorg Chem 44:7459

    Article  CAS  Google Scholar 

  51. Nazif MA, Bangert J-A, Ott I, Gust R, Stoll R, Sheldrick WS (2009) J Inorg Biochem 103:1405

    Article  Google Scholar 

  52. Chen Y, Shepherd RE (1998) Inorg Chim Acta 279:85

    Article  CAS  Google Scholar 

  53. Summa N, Schiess W, Puchta R, van Eikema Hommes N, van Eldik R (2006) Inorg Chem 45:2948

    Article  CAS  Google Scholar 

  54. Sato N (1996) Pyrazines and their benzo derivatives. In: Boulton AJ (ed) , Comprehensive heterocyclic chemistry II, vol 6(Ch. 6.03). Pergamon, Oxford

  55. Ge G, He J, Guo H, Wang H, Zou D (2009) J Organomet Chem 694:3050

    Article  CAS  Google Scholar 

  56. Tobe ML, Burgess J (1999) Inorganic reaction mechanisms. Addison Wesley Longman Ltd., NY, pp 30–43, 70–112

  57. Atwood JD (1997) Inorganic and organometallic reaction mechanisms, 2nd edn. Wiley-VCH, NY, pp 43–46

    Google Scholar 

  58. Wilkins RG (1991) Kinetics and mechanism of reactions of transition metal complexes, 2nd edn. VCH, Wienheim, pp 199–201

    Book  Google Scholar 

  59. Basolo F, Pearson RG (1967) Mechanism of inorganic reactions, 2nd edn. Wiley, New York, pp 80–115

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the University of KwaZulu-Natal and the National Research Foundation (NRF, South Africa) and Egerton University, Kenya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deogratius Jaganyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 7846 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ongoma, P.O., Jaganyi, D. Substitution reactions in dinuclear platinum(II) complexes: an evaluation of the influence of the diazine-bridging ligand on reactivity. Transition Met Chem 38, 587–601 (2013). https://doi.org/10.1007/s11243-013-9726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-013-9726-4

Keywords

Navigation