Skip to main content
Log in

Catalytic activity of a supported palladium–benzimidazole complex toward alkene hydrogenation

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A polymer anchored palladium complex was synthesized by sequential attachment of benzimidazole and palladium chloride to chloromethylated polystyrene divinyl benzene co-polymer with 6.5 % cross-linking. The product was characterized by XPS, UV–vis. spectrophotometry, FTIR and TGA. Various physico-chemical properties such as bulk density, surface area and swelling behavior in different solvents were also measured. The polymer anchored complex was tested as a catalyst for reduction of olefins. The kinetics of hydrogenation of 1-hexene was studied by varying the temperature, catalyst concentration and substrate concentration. The energy and entropy of activation were evaluated from the kinetic data. The catalyst could be recycled a number of times and no leaching of metal from the catalyst surface was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2

Similar content being viewed by others

Abbreviations

PSDVB:

Chloromethylated polystyrene divinyl benzene

PSDVB-BzlH:

Benzimidazole Functionalized beads

PSDVB-BzlH-PdCl2 :

Functionalized beads with PdCl2

References

  1. Corma A, Serna P, Concepcio′n P, Calvino J (2008) J Am Chem Soc 130:8748–8753

    Article  CAS  Google Scholar 

  2. Augustine RL (1997) Catal Today 37:419–440

    Article  CAS  Google Scholar 

  3. Ramesh B, Sadanand DT, Reddy SG, Swamy KV, Saiprakash PK (2000) Trans Met Chem 25:639–643

    Article  CAS  Google Scholar 

  4. Ertl G, Knozinger H, Schuth F, Weitkamp J (eds) (2008) Handbook of heterogeneous catalysis, vol 7, 2nd edn. Wiley-VCH, Verlag, GmbH & Co. KGaA, pp 3266–3329

  5. Leadbeater NE, Marco M (2002) Chem Rev 102:3217–3274

    Article  CAS  Google Scholar 

  6. Gupta KC, Sutar AK, Lin CC (2009) Coord Chem Rev 253:1926–1946

    Article  CAS  Google Scholar 

  7. McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275–3300

    Article  CAS  Google Scholar 

  8. Alexander S, Udayakumar V, Gayathri V (2009) J Mol Catal 314:21–27

    Article  CAS  Google Scholar 

  9. Udayakumar V, Alexander S, Gayathri V, Shivakumaraiah B, Patil KR, Viswanathan B (2010) J Mol Catal 317:111–117

    Article  CAS  Google Scholar 

  10. Armarego WLF, Chai CLL (2003) Purification of laboratory chemicals, 5th edn. Elsevier

  11. Dalal MK, Ra RN (2001) Bull Mater Sci 24:237–241

    Article  CAS  Google Scholar 

  12. Anthony R, Tembe GL, Ravindranathan M, Ram RN (2003) J Appl Polym Sci 90:370–378

    Article  Google Scholar 

  13. Goodfellow RJ, Goggin PL, Venanzi LM (1967) J Chem Soc A11:1897–1900

    Google Scholar 

  14. Park PJD, Hendra PJ (1969) Spectrochim Acta 25A:909–916

    Google Scholar 

  15. Anderson C, Larsson R (1983) J Catal 81:179–193

    Article  Google Scholar 

  16. Mani R, Mahadevan V, Srinivasan M (1990) Bri Poly J 22:177–184

    Article  CAS  Google Scholar 

  17. Ferraro JR (1971) Low-frequency vibrations of inorganic and coordination compounds. Plenum Press, New York

    Google Scholar 

  18. Selvaraj PC, Mahadevan V (1997) J Polym Sci Polym Chem 35:105–122

    Article  CAS  Google Scholar 

  19. Karklin LN, Iovel IG, Shimanskaya MV (1985) React Kinet Catal Lett 27:15–19

    Article  Google Scholar 

  20. Bruner H, Bailar JC (1973) Inorg Chem 12:1465–1470

    Article  CAS  Google Scholar 

  21. Gupta KC, Abdulkadir HK, Chand S (2003) J Mol Catal A 202:253–268

    Article  CAS  Google Scholar 

  22. Sherrington DC (1998) Chem Commun 21:2275–2286

    Google Scholar 

  23. Candlin JP, Oldhalm AR (1968) Disc Far Soc 46:60–71

    Article  Google Scholar 

  24. Kaneda K, Terasawa M, Imanaka T, Teranishi S (1976) Chem Lett 5:995–998

    Google Scholar 

  25. Jardine FH, Osborn JA, Wilkinson G (1967) J Chem Soc (A) 1574–1578

  26. Nakamura Y, Hirai H (1974) Chem Lett 3:645–650

    Google Scholar 

  27. Zhang K, Neckers DC (1983) J Polym Sci A 21:3115–3127

    CAS  Google Scholar 

  28. Efraty A, Feinstein I (1982) Inorg Chem 21:3115–3118

    Article  CAS  Google Scholar 

  29. Studies on polymer anchored and water soluble complexes of rhodium(I) as hydrogenation catalysts, Ph.D thesis by V. R. Parameshwaran, Dept. of Chemistry, IIT Madras 1990

  30. Dalal MK, Gokak DT, Patel DR, Ram RN (1998) Ind J Chem Tech 5:376–382

    CAS  Google Scholar 

  31. Dalal MK, Ram RN (2000) J Mol Catal 159:285–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank UGC for DRS programme, Prof. Sadashiva, Liquid Crystal Lab. RRI for CHN analysis and DST, Central Facility, Physics Department, I.I.Sc. Bangalore for recording far-IR spectra. Thermax India Ltd. for providing chloromethylated poly(styrene–divinylbenzene) beads.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gayathri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 632 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, S., Udayakumar, V. & Gayathri, V. Catalytic activity of a supported palladium–benzimidazole complex toward alkene hydrogenation. Transition Met Chem 37, 367–372 (2012). https://doi.org/10.1007/s11243-012-9597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-012-9597-0

Keywords

Navigation