Skip to main content
Log in

Microwave-assisted aqueous Suzuki coupling reactions catalyzed by ionic palladium(II) complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Suzuki coupling is one of the most powerful methods for the synthesis of biaryls. We have prepared and characterized a series of unsymmetrical sulfonated water-soluble Pd(II)-pyridyl imine complexes and investigated them as catalysts for the Suzuki cross-coupling reaction in water under microwave irradiation. The compounds proved to be effective catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. (1)Biphenyl δ 7.48–7.46 (m, 4H), 7.31–7.26 (m, 4H), 7.21–7.18 (m, 2H). (2) 4-Methylbiphenyl δ 7.56 (d, 2H, J = 7.9 Hz), 7.41 (d, 2H, J = 8.0 Hz), 7.33 (t, 2H, J = 7.5 Hz), 7.19 (t, 1H, J = 8.6 Hz), 7.11 (d, 2H, J = 7.4 Hz), 2.29 (s, 3H).(3) 2-Methylbiphenyl δ 7.41–7.33 (m, 2H), 7.31–7.29 (m, 3H), 7.27–7.21 (m, 4H), 2.19 (s, 3H).(4) 4-acetylbiphenyl δ 8.01 (d, 2H, J = 8.1 Hz), 7.61 (d, 2H, J = 8.8 Hz), 7.59 (d, 2H, J = 8.6 Hz), 7.55–7.34/m, 3H), 2.61 (s, 3H).(5) 4-methoxybiphenyl δ 7.51–7.48 (m, 4H), 7.41 (t, 2H, J = 6.9 Hz), 7.21 (t, 2H, J = 7.9 Hz), 6.88 (d, 2H, J = 8.9 Hz), 3.77 (s, 3H).(6) 2,6-dimethylbiphenyl δ 7.51 (d, 2H, J = 6.9 Hz), 7.39 (m, 2H), 7.11 (m, 1H), 6.91 (m, 3H), 2.41 (s, 6H). (7) 4-nitrobiphenyl δ 8.25 (s, 1H), 8.03 (d, 1H, J = 7.9 Hz), 7.86 (d, 1H, J = 7.6 Hz), 7.31 - 7.24 (m, 3H), 7.19–7.11 (m, 3H).(8) 4-Methyl-4′ methylbiphenyl δ 7.53 (d, 4H, J = 7.7 Hz), 7.14 (d, 4H, J = 8.1 Hz). (9) 4-Methyl-2′ methylbiphenyl δ 7.41 (d, 3H, J = 7.7 Hz), 7.09 (m, 5H), 2.28 (s, 6H). (10) 4-chloro-4-methoxybiphenyl δ 7.49–7.43 (m, 4H), 7.32 (d, 2H, J = 8.6 Hz), 6.73 (d, 2H, J = 8.5 Hz), 3.77 (s, 3H). (11) 4-Hidroxybiphenyl δ 7.48 (d, 2H, J = 6.9 Hz), 7.36–7.29 (m, 5H), 6.71 (d, 2H, J = 7.3 Hz), 5.32 (s, 1H, br). (12) 4-acetylbiphenyl δ10.09 (s, 1 h, br), 8.14 (d, 2H, J = 7.9 Hz, 7.74 (d, 2H, J = 8.3 Hz), 7.54 (m, 2H), 7.23 (m, 3H). (13) 2-methyl-4-benzoicacid δ 10.09 (s, 1H), 8.14 (d, 2H, J = 7.9 Hz), 7.74 (d, 2H, J = 8.3 Hz), 7.54 (m, 2H), 7.23 (m, 3H). (14) 4-Chlorobiphenyl δ 7.55–7.32 (m, 9H).

References

  1. Najera C, Botella L (2002) J Organomet Chem 663(1–2):46–57

    Google Scholar 

  2. Rossi R, Bellina F, Carpita A (2004) Synthesis 2004(15):2419–2440

  3. Liebscher J, Yin LX (2007) Chem Rev 107(1):133–173

    Article  Google Scholar 

  4. Miyaura N, Suzuki A (1995) Chem Rev 95(7):2457–2483

    Article  CAS  Google Scholar 

  5. Suzuki A (1999) J Organomet Chem 576(1–2):147–168

    Article  CAS  Google Scholar 

  6. Alonso F, Beletskaya IP, Yus M (2008) Tetrahedron 64(14):3047–3101

    Article  CAS  Google Scholar 

  7. Mignani G, Corbet JP (2006) Chem Rev 106(7):2651–2710

    Article  Google Scholar 

  8. Kertesz M, Choi CH, Yang SJ (2005) Chem Rev 105(10):3448–3481

    Article  CAS  Google Scholar 

  9. Buchwald SL, Billingsley KL, Anderson KW (2006) Angew Chem Int Edit 45(21):3484–3488

    Article  Google Scholar 

  10. Buchwald SL, Wolfe JP, Tomori H, Sadighi JP, Yin JJ (2000) J Org Chem 65(4):1158–1174

    Article  Google Scholar 

  11. ten Brink GJ, Arends IWCE, Sheldon RA (2000) Science 287(5458):1636–1639

    Article  CAS  Google Scholar 

  12. Herwig J, Zimmermann B, Beller M (1999) Angew Chem Int Edit 38(16):2372–2375

    Article  Google Scholar 

  13. Casalnuovo AL, Calabrese JC (1990) J Am Chem Soc 112(11):4324–4330

    Article  CAS  Google Scholar 

  14. Shaughnessy KH, Huang RC (2006) Organometallics 25(17):4105–4112

    Article  Google Scholar 

  15. Falvello LR, Najera C, Gil-Molto J, Karlstrom S (2003) Org Lett 5(9):1451–1454

    Article  Google Scholar 

  16. Najera C, Botella L (2002) Angew Chem Int Edit 41(1):179–181

    Article  Google Scholar 

  17. Sun HJ, Zhou J, Guo XM, Tu CZ, Li XY (2009) J Organomet Chem 694(5):697–702

    Article  Google Scholar 

  18. Mentes A, Hanhan ME (2008) Transit Metal Chem 33(1):91–97

    Article  CAS  Google Scholar 

  19. Mentes A, Sezek S, Hanhan ME, Buyukgungor O (2007) Turk J Chem 31(6):667–676

    CAS  Google Scholar 

  20. Lemaire M, Fache F, Schulz E, Tommasino ML (2000) Chem Rev 100(6):2159–2231

    Article  Google Scholar 

  21. Togni A, Venanzi LM (1994) Angewandte Chemie Int Edition Engl 33(5):497–526

    Article  Google Scholar 

  22. Laine TV, Piironen U, Lappalainen K, Klinga M, Aitola E, Leskela M (2000) J Organomet Chem 606(2):112–124

    Article  CAS  Google Scholar 

  23. Borriello C, Ferrara ML, Orabona I, Panunzi A, Ruffo F (2000) J Chem Soc Dalton (15):2545–2550

  24. Ferrara ML, Orabona I, Ruffo F, Funicello M, Panunzi A (1998) Organometallics 17(18):3832–3834

    Article  CAS  Google Scholar 

  25. Kundu A, Buffin BP (2001) Organometallics 20(17):3635–3637

    Article  CAS  Google Scholar 

  26. Hanhan ME (2008) Appl Organomet Chem 22(5):270–275

    Article  CAS  Google Scholar 

  27. Sun HJ, Guo XM, Zhou J, Li XY (2008) J Organomet Chem 693(25):3692–3696

    Article  Google Scholar 

  28. Kanetani F, Yamaguchi H (1981) B Chem Soc Jpn 54(10):3048–3058

    Article  CAS  Google Scholar 

  29. Chec EK, Kubiak M, Glowiak T, Ziolkowski JJ (1998) Transit Metal Chem 23(5):641–643

    Article  Google Scholar 

  30. Yang KY, Lachicotte RJ, Eisenberg R (1997) Organometallics 16(24):5234–5243

    Article  CAS  Google Scholar 

  31. vanAsselt R, Elsevier CJ, Amatore C, Jutand A (1997) Organometallics 16(3):317–328

    Article  CAS  Google Scholar 

  32. Buffin BP, Kundu A (2003) Inorg Chem Commun 6(6):680–684

    Article  CAS  Google Scholar 

  33. Milstein D, Weissman H (1999) Chem Commun (18):1901–1902

  34. Liu P, Zhang WZ, He R (2009) Appl Organomet Chem 23(4):135–139

    Article  Google Scholar 

  35. Thimmaiah M, Fang S (2007) Tetrahedron 63(29):6879–6886

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Research Board of Zonguldak Karaelmas University (BAP-2011-10-03-011 and BAP-2011-10-03-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emre Hanhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanhan, M.E., Senemoglu, Y. Microwave-assisted aqueous Suzuki coupling reactions catalyzed by ionic palladium(II) complexes. Transition Met Chem 37, 109–116 (2012). https://doi.org/10.1007/s11243-011-9564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9564-1

Keywords

Navigation