Skip to main content
Log in

Iron(III)–salen–H2O2 as a peroxidase model: electron transfer reactions with anilines

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Iron(III)–salen complexes catalyze the H2O2 oxidation of various ring-substituted anilines in MeCN have been studied, and [O=FeIV(salen)] is proposed as the active species. Study of the kinetics of the reaction by spectrophotometry shows the emergence of a new peak at 445 nm in the spectrum which corresponds to azobenzene. Further oxidation of azobenzene by H2O2 leads to the formation of azoxybenzene. ESI–MS studies also support the formation of these products. The rate constants for the oxidation of meta- and para-substituted anilines were determined from the rate of decay of oxidant as well as the rate of formation of azobenzene, and the reaction follows Michaelis–Menten kinetics. The rate data show a linear relationship with the Hammett σ constants and yield a ρ value of −1.1 to −2.4 for substituent variation in the anilines. A reaction mechanism involving electron transfer from aniline to [O=Fe(salen)] is proposed. The presence of axial ligands modulates the activity of the complex.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Oritz De Montellano PR (ed) (2005) Cytochrome P-450 structure, mechanism and biochemistry, 3rd edn. Plenum press, New York

    Google Scholar 

  2. Fujji H (2002) Coord Chem Rev 226:51

    Article  Google Scholar 

  3. Que L Jr, Ho RYN (1996) Chem Rev 96:2607

    Article  CAS  Google Scholar 

  4. Que L Jr (2000) Nat Struct Biol 7:182

    Article  CAS  Google Scholar 

  5. Back HK, Van Wart HE (1989) Biochemistry 28:5714

    Article  Google Scholar 

  6. Back HK, Van Wart HE (1992) J Am Chem Soc 114:718

    Article  Google Scholar 

  7. Rodriguez-Lopez JN, Smith AT, Thomley RNF (1996) J Biol Chem 271:4023

    Article  CAS  Google Scholar 

  8. Coon MJ, Vaz ADN, Mcginnity DF, Peng HM (1998) Drug Metab Dispos 26:1190

    CAS  Google Scholar 

  9. Groves JT, Watanabe Y (1988) J Am Chem Soc 110:8443

    Article  CAS  Google Scholar 

  10. Bell SEJ, Cooke PR, Inchely P, Leonard DR, Lindsay Smith JR, Robbins A (1991) J Chem Soc Perkin Trans 2:549

    Google Scholar 

  11. Meunier B (1992) Chem Rev 92:1411

    Article  CAS  Google Scholar 

  12. Groves JT, Gross Z, Stern MK (1994) Inorg Chem 33:5065

    Article  CAS  Google Scholar 

  13. Costas M, Mehn MP, Jensen MP, Que L Jr (2004) Chem Rev 104:939

    Article  CAS  Google Scholar 

  14. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM (2003) J Am Chem Soc 125:13008

    Article  CAS  Google Scholar 

  15. Abu-Omar MM, Loaiza A, Hontzeas N (2005) Chem Rev 105:2227

    Article  CAS  Google Scholar 

  16. Newscomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG (2006) J Am Chem Soc 128:4580

    Article  Google Scholar 

  17. Schlichting I, Berndzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko A, Sligar SG (2000) Science 287:1615

    Article  CAS  Google Scholar 

  18. Groves JT, Han YZ (1995) Models and mechanism of cytochrome p450 action. In: Ortiz de Montellano PR (ed) Cytochrome P450. Structure, mechanism and biochemistry, 2nd edn. Plenum press, New York, pp 3–48

  19. Wallar BJ, Lipscomb JD (1996) Chem Rev 96:2625

    Article  CAS  Google Scholar 

  20. Tshuva EY, Lippard SJ (2004) Chem Rev 104:987

    Article  CAS  Google Scholar 

  21. Kryatov SV, Rybak-Akimova EV, Schindler S (2005) Chem Rev 105:2175

    Article  CAS  Google Scholar 

  22. Kim SO, Sastri CV, Seo MS, Kim J, Nam W (2005) J Am Chem Soc 127:4178

    Article  CAS  Google Scholar 

  23. Oh NY, Suh Y, Park MJ, Seo MS, Kim J, Nam W (2005) Angew Chem Int Ed 44:4235

    Article  CAS  Google Scholar 

  24. Berry JF, Bill E, Bothi E, Neese F, Wieghardt K (2006) J Am Chem Soc 128:13515

    Article  CAS  Google Scholar 

  25. Canali L, Sherrington DC (1999) Chem Soc Rev 28:85

    Article  CAS  Google Scholar 

  26. Katsuki T (1995) Coord Chem Rev 140:189

    Article  CAS  Google Scholar 

  27. Ito YN, Katsuki T (1999) Bull Chem Soc Jpn 72:603

    Article  CAS  Google Scholar 

  28. Jacobsen EN (1995) In: Wilkinson G, Stone FGA, Abel EW, Hegedus LS, (eds) Comprehensive organometallic chemistry II, vol 12, chap II. Pergamon, New york

  29. McGarrigle EM, Gilheany DG (2005) Chem Rev 105:1563

    Article  CAS  Google Scholar 

  30. Chellamani A, Alhaji NMI, Rajagopal S, Sevvel R, Srinivasan C (1995) Tetrahedron 51:12677

    Article  CAS  Google Scholar 

  31. Chellamani A, Alhaji NMI, Rajagopal S (1997) J Chem Soc Perkin Trans 2:299

    Google Scholar 

  32. Chellamani A, Kulandaipandi P, Rajagopal S (1999) J Org Chem 64:2232

    Article  CAS  Google Scholar 

  33. Sevvel R, Rajagopal S, Srinivasan C, Alhaji NMI, Chellamani A (2000) J Org Chem 65:3334

    Article  CAS  Google Scholar 

  34. Bryliakov KP, Talsi EP (2004) Angew Chem Int Ed 43:5228

    Article  CAS  Google Scholar 

  35. Bryliakov KP, Talsi EP (2007) Chem Eur J 13:8045

    Article  CAS  Google Scholar 

  36. Venkataramanan NS, Premsingh S, Rajagopal S, Pitchumani K (2003) J Org Chem 68:1506

    Article  Google Scholar 

  37. Venkataramanan NS, Rajagopal S (2006) Tetrahedron 62:5645

    Article  CAS  Google Scholar 

  38. Venkataramanan NS, Rajagopal S, Vairamani M (2007) J Inorg Biochem 101:274

    Article  CAS  Google Scholar 

  39. Venkataramanan NS, Kuppuraj G, Rajagopal S (2005) Coord Chem Rev 249:1249

    Article  CAS  Google Scholar 

  40. Jacobsen EN, Kakiuchi F, Konster RG, Larrow JF, Tokunga M (1997) Tetrahedron Lett 38:773

    Article  CAS  Google Scholar 

  41. Wu MH, Jacobsen EN (1998) J Org Chem 63:5252

    Article  CAS  Google Scholar 

  42. Wu MH, Hansen KB, Jacobsen EN (1999) Angew Chem Int Ed 38:2012

    Article  CAS  Google Scholar 

  43. Gigante B, Corma A, Garcia H, Sabata MJ (2000) Catal Lett 68:113

    Article  CAS  Google Scholar 

  44. Angelino MD, Labinis PE (1999) J Polym Sci A Polym Chem 37:3888

    Article  CAS  Google Scholar 

  45. Jacobsen EN (2000) Acc Chem Res 33:421

    Article  CAS  Google Scholar 

  46. Paddock RL, Nguyen ST (2001) J Am Chem Soc 123:11498

    Article  CAS  Google Scholar 

  47. Shen Y-M, Duan W-L, Shi M (2003) J Org Chem 68:1559

    Article  CAS  Google Scholar 

  48. Solomon EI, Brunold TC, Davis MI, Kemsley JW, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Chem Rev 100:235

    Article  CAS  Google Scholar 

  49. Ohlendrf DH, Lipscomb JD, Weber PC (1988) Nature 336:403

    Article  Google Scholar 

  50. Ohlendorf DH, Orville AM, Lipscomb JD (1994) J Mol Biol 244:586

    Article  CAS  Google Scholar 

  51. Sivasubramanian VK, Ganesan M, Rajagopal S, Ramaraj R (2002) J Org Chem 67:1506

    Article  CAS  Google Scholar 

  52. Sivasubramanian VK, Ganesan M, Rajagopal S, Ramaraj R (unpublished work)

  53. Li F, Meier KK, Cranswick MA, Chakrabarti M, Van Heuvelen KM, Munck E, Que L Jr (2011) J Am Chem Soc 133:7256

    Article  CAS  Google Scholar 

  54. Premsingh S, Venkataramanan NS, Rajagopal S, Mirza SP, Vairamani M, Rao PS, Velavan K (2004) Inorg Chem 43:5744

    Article  CAS  Google Scholar 

  55. Collman PJ, Zeng L, Brauman I (2004) Inorg Chem 43:2672

    Article  CAS  Google Scholar 

  56. Groos Z, Ini S (1997) J Org Chem 62:5514

    Article  Google Scholar 

  57. Palucki M, Finney NS, Pospisil PJ, Guler ML, Ishida T, Jacobsen N (1998) J Am Chem Soc 120:948

    Article  CAS  Google Scholar 

  58. Mansuy D (1993) Coord Chem Rev 125:129

    Article  CAS  Google Scholar 

  59. Li H, Lee LS, Schulze DG, Guest CA (2003) Environ Sci Technol 37:2686

    Article  CAS  Google Scholar 

  60. Goto Y, Watanabe Y, Fukuzumi S, Jones JP, Dinnocenzo JP (1998) J Am Chem Soc 120:10762

    Article  CAS  Google Scholar 

  61. Goto Y, Matsui T, Ozaki S, Watanabi Y, Fukuzumi S (1999) J Am Chem Soc 121:9497

    Article  CAS  Google Scholar 

  62. Goodin DB, Me Ree DE (1993) Biochemistry 32:3313

    Article  CAS  Google Scholar 

  63. Battioni P, Renaud JP, Bartoli JF, Reina-Artiles M, Fort M, Mansuy D (1988) J Am Chem Soc 110:8462

    Article  CAS  Google Scholar 

  64. Anelli PL, Banfi S, Montanari F, Quici S (1989) Chem Commun (12):779

  65. Bahramian B, Mirkhani V, Tangestaninejad S, Moghadam M (2006) J Mol Cat A 244:139

    Article  CAS  Google Scholar 

  66. Gerloch M, Lewis J, Mabbs FE, Richards A (1968) J Chem Soc A 112

  67. Gulloti M, Casella L, Pasini A, Ugo R (1977) J Chem Soc Dalton Trans (4):339

  68. Gerloch M, Mabbs FE (1967) J Chem Soc A 1598

  69. Hobday MD, Smith TD (1973) Coord Chem Rev 9:311

    Article  CAS  Google Scholar 

  70. Karunakaran C, Kamalam M (2002) J Org Chem 67:1118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. R. thanks DST for providing financial assistance in the form of project and UGC for sanctioning the DRS project for the School of Chemistry from which the instruments used for the study were procured. A. M. A. thanks UGC, the Principal and the Management, M. S. S. Wakf Board College, Madurai, for sanctioning leave under the FIP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adhem Mohamed Aslam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 968 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam, A.M., Rajagopal, S., Vairamani, M. et al. Iron(III)–salen–H2O2 as a peroxidase model: electron transfer reactions with anilines. Transition Met Chem 36, 751–759 (2011). https://doi.org/10.1007/s11243-011-9529-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-011-9529-4

Keywords

Navigation