Skip to main content
Log in

Kinetics and mechanism of oxidation of β-Alanine by N-bromophthalimide in the presence of Ru(III) chloride as homogenous catalyst in acidic medium

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of Ru(III) chloride-catalyzed oxidation of β-Alanine (NH3 +CH2CH2COOH, β-Ala) by N–bromophthalimide (NBP) in aqueous perchloric acid medium was studied at 35 °C. The rate law followed a first-order and zero-order dependence with respect to [NBP] and [β-Ala], respectively. The reaction followed first-order kinetics with respect to [Ru(III)] chloride at a range of low concentrations while the order changed from first- to zero-order at high concentration of [Ru(III)] chloride; demonstrating the catalytic effect for the oxidation of β-Ala by NBP. The rate decreased with increase in acidity. Chloride ions positively influenced the rate of the reaction. Neither phthalimide (NHP) nor Hg(II) influenced the reaction rate. Ionic strength (I) and dielectric constant (D) of the medium had no significant effect on the rate. Activation parameters of the reactions were determined by studying the reaction at different temperatures (30–50 °C). The colorimetric, FTIR, and GC-MS techniques were used to identify methyl cyanide (CH3CN) and CO2 as products of the reaction. In the reaction, approximately 2.3 moles of NBP oxidized one mole of β-Ala. A reaction scheme of the oxidation of β-Ala by NBP in the presence of Ru(III) chloride was found to be in consistent with the rate law and the reaction stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Reaction Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chandra G, Srivastava SN (1972) J Inorg Nucl Chem 34:197. doi:10.1016/0022-1902(72)80379-8

    Article  CAS  Google Scholar 

  2. Rao VS, Sethuram B, Rao TN (1979) Int J Chem Kinet 11:165. doi:10.1002/kin.550110208

    Article  CAS  Google Scholar 

  3. Kantouch A, Fattah SHA (1971) Chem Zvest 25:222

    CAS  Google Scholar 

  4. Singh AK, Chopra D, Rahmani S, Singh B (1998) Carbohydr Res 314:157. doi:10.1016/S0008-6215(98)00322-X

    Article  CAS  Google Scholar 

  5. Singh AK, Singh V, Singh AK, Gupta N, Singh B (2002) Carbohydr Res 337:345. doi:10.1016/S0008-6215(01)00319-6

    Article  CAS  Google Scholar 

  6. Singh AK, Singh V, Rahmani S, Singh AK, Singh B (2003) J Mol Cataly A: Chem 197:91

    Article  CAS  Google Scholar 

  7. Singh AK, Srivastava J, Rahmani S, Singh V (2006) Carbohydr Res 341:397. doi:10.1016/j.carres.2005.11.012

    Article  CAS  Google Scholar 

  8. Singh AK, Singh V, Ashish Srivastava J (2006) Ind J Chem 45A:599

    CAS  Google Scholar 

  9. Rangappa KS, Raghvendra MP, Mahadevappa DS, Gowda DC (1998) Carbohydr Res 306:56. doi:10.1016/S0008-6215(97)00243-7

    Article  Google Scholar 

  10. Gowda BT, Damodara N, Jyothi K (2007) Int J Chem Kinet 37:572. doi:10.1002/kin.20103

    Article  Google Scholar 

  11. Mukherjee N, Banerjee KK (1981) J Org Chem 46:2323. doi:10.1021/jo00324a022

    Article  CAS  Google Scholar 

  12. Filler R (1963) Chem Rev 63:21. doi:10.1021/cr60221a002

    Article  CAS  Google Scholar 

  13. Khanchandani R, Sharma PK, Banerji KK (1996) Ind J Chem 35A:57

    Google Scholar 

  14. Chaudhary K, Sharma PK, Banerji KK (1999) Int J Chem Kinet 31:469. doi:10.1002/(SICI)1097-4601(1999)31:7<469::AID-KIN1>3.0.CO;2-2

    Article  Google Scholar 

  15. Vyas, Shashi, Sharma PK (2001) Oxdn Commun 24:248

    CAS  Google Scholar 

  16. Kumbhat V, Sharma PK, Banerjee KK (2002) Int J Chem Kinet 34:248. doi:10.1002/kin.10036

    Article  CAS  Google Scholar 

  17. Thiagarajan V, Venkatasubramanian N (1970) Ind J Chem 8A:809

    Google Scholar 

  18. Bachhawat JN, Mathur NK (1971) Ind J Chem 9A:1335

    Google Scholar 

  19. Jabbar SFA, Surender RV (1994) Ind J Chem 33A:69

    Google Scholar 

  20. Singh B, Srivastava S (1991) Trans Met Chem 16:466. doi:10.1007/BF01129466

    Article  CAS  Google Scholar 

  21. Jagdeesh RV, Puttaswamy (2008) J Phys Org Chem 21:844. doi:10.1002/poc.1379

    Article  Google Scholar 

  22. Sharma JP, Singh RNP, Singh AK, Singh B (1986) Tetrahedron 42:2739. doi:10.1016/S0040-4020(01)90561-7

    Article  CAS  Google Scholar 

  23. Singh AK, Srivastava J, Rahmani S (2007) J Mol Cataly A: Chem 271:151

    Article  CAS  Google Scholar 

  24. Singh B, Singh AK, Singh D (1988) J Mol Cataly A: Chem 48:207

    Article  CAS  Google Scholar 

  25. Huo S-Y, Song C-Y, Zhen Y-J (2007) Trans Met Chem 32:936. doi:10.1007/s11243-007-0257-8

    Article  CAS  Google Scholar 

  26. Katre YR, Joshi GK, Singh AK (2008) Tenside Surf Det 45:213

    CAS  Google Scholar 

  27. Soloway S, Lipschietz A (1952) Anal Chem 24:898. doi:10.1021/ac60065a041

    Article  CAS  Google Scholar 

  28. Singh AK, Rahmani S, Singh B, Singh RK, Singh M (2004) J Phys Org Chem 17:249. doi:10.1002/poc.723

    Article  CAS  Google Scholar 

  29. Bailar JC (1956) The chemistry of co-ordination compounds. Reinhold, New York, p 14

    Google Scholar 

  30. Krishnakumar V, Balachandran V, Chithambarathanu T (2005) Spectrochim Acta 62:918. doi:10.1016/j.saa.2005.02.051

    Article  CAS  Google Scholar 

  31. Khazaei A, Manesh AA (2005) J Braz Chem Soc 16:874. doi:10.1590/S0103-50532005000500030

    Article  CAS  Google Scholar 

  32. Kirsch A, Luning U (1998) J Prakt Chem 340:129. doi:10.1002/prac.19983400205

    Article  CAS  Google Scholar 

  33. Kirsch A, Luning U, Kruger O (1999) J Prakt Chem 341:649. doi:10.1002/(SICI)1521-3897(199910)341:7<649::AID-PRAC649>3.0.CO;2-L

    Article  CAS  Google Scholar 

  34. Day JC, Govindaraj N, McBain DS, Skell PS, Tanko JM (1986) J Org Chem 51:4959. doi:10.1021/jo00375a038

    Article  CAS  Google Scholar 

  35. Ramachandrappa R, Puttaswamy, Gowda NMM (1998) Int J Chem Kinet 30:407. doi:10.1002/(SICI)1097-4601(1998)30:6<407::AID-KIN2>3.0.CO;2-W

    Article  CAS  Google Scholar 

  36. Das CM, Indrasenan P (1986) Ind J Chem 25A:605

    CAS  Google Scholar 

  37. Das CM, Indrasenan P (1987) Ind J Chem 26A:717

    CAS  Google Scholar 

  38. Das CM, Indrasenan P (1984) Ind J Chem 23A:869

    Google Scholar 

  39. Taqui Khan MM, Chandraiah GR, Rao AP (1986) Inorg Chem 25:665. doi:10.1021/ic00225a015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (AKS) thank the University Grant Commission, Regional Office Bhopal, MP for Minor Research Project grant. Authors wish to thank the reviewer for greatly improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajaya Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Jain, B., Negi, R. et al. Kinetics and mechanism of oxidation of β-Alanine by N-bromophthalimide in the presence of Ru(III) chloride as homogenous catalyst in acidic medium. Transition Met Chem 34, 521–528 (2009). https://doi.org/10.1007/s11243-009-9225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9225-9

Keywords

Navigation