Skip to main content
Log in

Synthesis, characterization, and bioactivities of copper complexes with N-substituted Di(picolyl)amines

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Three new Cu(II) complexes with ethyl bis(2-pyridylmethyl)amino-2-propionate (Etdpa), or bis(2-pyridylmethyl)amino-2-propionate (Adpa), were synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure of [(Adpa)CuCl] shows that the copper(II) atom is coordinated by three N atoms, one oxygen atom from the ligand (Adpa) and one chloride anion, forming a trigonal bipyramidal geometry. The spectrophotometric and fluorescence titration data indicate that the interaction of square pyramidal [(Etdpa)CuCl2] with ct-DNA is weak, but the trigonal bipyramidal complexes [(Adpa)Cu(H2O)](ClO4) and [(Adpa)CuCl] interact with ct-DNA with the mode of intercalation. The inhibition activities of the three new copper(II) complexes on the four cancer cells (Mcf-7, Eca-109, A549, and Hela) are in the order: [(Adpa)Cu(H2O)](ClO4) > [(Adpa)CuCl] > [(Etdpa)CuCl2], which correlates with their DNA-binding properties. The results show that the substituents introduced on the secondary amino nitrogen atom of dpa have great contribution to the antitumor activities of these copper(II) complexes. It is also found that the coordination of copper(II) ions with AdpaH can decrease the toxicity of AdpaH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar CV, Barton JK, Turro MJ (1985) J Am Chem Soc 107:5518. doi:1.101021/ja00305a033

    Article  CAS  Google Scholar 

  2. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563. doi:10.1021/cr950046o

    Article  CAS  Google Scholar 

  3. Lewis EA, Tolman WB (2004) Chem Rev 104:1047. doi:10.1021/cr020633r

    Article  CAS  Google Scholar 

  4. Apelgot S, Coopy J, Fromentin A, Guille E, Poupon MF, Roussel A (1986) Anticancer Res 6:159

    CAS  Google Scholar 

  5. Hambley TW (2007) J Chem Soc Dalton Trans 43:4929. doi:10.1039/6706075k

    Google Scholar 

  6. Maiti D, Lucas HR, Sarjeant AAN, Karlin KD (2007) J Am Chem Soc 129:6998. doi:10.1021/ja071704c

    Article  CAS  Google Scholar 

  7. Zhou CJ, Zhao J, Wu YB, Yin CX, Yang P (2007) J Inorg Biochem 101:10. doi:10.1016/j.jinorgbio.2006.07.011

    Article  CAS  Google Scholar 

  8. Choi KY, Ryu H, Suny ND (2003) J Chem Crystallogr 32:947. doi:1074-1542/03/1200-0947

    Article  Google Scholar 

  9. Kruppa M, Konig B (2006) Chem Rev 106:3520. doi:10.1021/cr010206y

    Article  CAS  Google Scholar 

  10. Kalinowski DS, Yu Y, Sharpe PC, Islam M, Liao YT, Lovejoy DB, Kumar N, Bernhardt PV, Richardson DR (2007) J Med Chem 50:3716. doi:10.1021/jm0704452

    Article  CAS  Google Scholar 

  11. Fernandes C, Parrilha GL, Lessa JA, Santiago LJM, Kanashiro MM, Boniolo FS, Bortoluzzi AJ, Vugman NV (2006) Inorg Chim Acta 359:3167. doi:10.1016/j.ica.2006.04.007

    Article  CAS  Google Scholar 

  12. Sheldrick GM (1997) SHELXTL-97, program for crystal structure solution and refinement. University of Gottingen, Germany

    Google Scholar 

  13. Reichmann ME, Rice SA, Thomas CA, Doty PJ (1954) J Am Chem Soc 76:3047. doi:10.1021/ja01640a067

    Article  CAS  Google Scholar 

  14. Barton JK, Danishefsky AT, Golderg JM (1984) J Am Chem Soc 106:2172. doi:10.1021/ja00319a043

    Article  CAS  Google Scholar 

  15. Dewey TG (1991) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum, New York, pp 1–41

    Google Scholar 

  16. Lakowica JR, Weber G (1973) Biochemistry 12:4161. doi:10.1021/bi00745a020

    Article  Google Scholar 

  17. Wang D, Narang A, Kotb M, Gaber DO, Miller DD, Kim SW, Mahoto RI (2002) Biomacromolecules 3:1197. doi:10.1021/bm025563c

    Article  CAS  Google Scholar 

  18. Bakalbassis EG, Tsipis CA, Bozopoulos AP, Dreissig DW, Hartl H, Mrozinski J (1991) Inorg Chem 30:2801. doi:10.1021/ic00013a018

    Article  Google Scholar 

  19. Choi KY, Jeon YM, Ryu H, Oh JJ, Lim HH, Kim MW (2004) Polyhedron 23:903. doi:10.1016/j.poly.2003.11.058

    Article  CAS  Google Scholar 

  20. Ling KQ, Lawrence M (2005) J Am Chem Soc 127:4777. doi:10.1021/ja455603

    Article  CAS  Google Scholar 

  21. Utz D, Kisslinger S, Hampel F, Schindle S (2008) J Inorg Biochem 102:1236. doi:10.1016/j.jinorgbio.2008.01.028

    Article  CAS  Google Scholar 

  22. Karlin KD, Hapes JC, Juen S, Hutchinson JP, Iubieta J (1982) Inorg Chem 21:4106. doi:10.1021/ic00141a049

    Article  CAS  Google Scholar 

  23. Hartman JR, Vachet RW, Pearson W, Wheat RJ, Callahan JH (2003) Inorg Chim Acta 343:119. doi:0020-1693/02/01229-x

    Article  CAS  Google Scholar 

  24. Li QS, Yang P, Wang HF, Guo ML (1996) J Inorg Biochem 64:181. doi:0162-0134196

    Article  CAS  Google Scholar 

  25. Hathaway BJ (1991) Struct Bonding 57:2801

    Google Scholar 

  26. Rao R, Patra AK, Chetana PR (2008) Polyhedron 27:1343. doi:10.1016/j.poly.2007.12.026

    Article  CAS  Google Scholar 

  27. Boger DL, Fink BE, Brunette SR, Tse WC, Hedrick MP (2001) J Am Chem Soc 123:5878. doi:10.1021/ja010041a

    Article  CAS  Google Scholar 

  28. Wang BD, Yang ZY, Wang Q (2006) Bioorgan Med Chem 14:1880

    Article  CAS  Google Scholar 

  29. Biver T, Secco F, Tine MR, Venturini M (2004) J Inorg Biochem 98:33. doi:10.1016/j.jinorgbio.2003.08010

    Article  CAS  Google Scholar 

  30. Ware WR (1962) J Phys Chem 66:455. doi:10.1021/j100809a020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Science Foundation of China (20777029B0702), distinguished scholar science foundation of Jiangsu University (06JDG050), and the foundation of state key Laboratory of Coordination Chemistry, Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Yun Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 831 kb)

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC No. 691109 for 3. The data can be obtained free of charge via http://www.ccdc.cam.ac.uk, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LY., Chen, QY., Huang, J. et al. Synthesis, characterization, and bioactivities of copper complexes with N-substituted Di(picolyl)amines. Transition Met Chem 34, 337–345 (2009). https://doi.org/10.1007/s11243-009-9200-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9200-5

Keywords

Navigation