Skip to main content
Log in

Mechanism of the oxidation of hydrazoic acid by tetrachloroaurate(III) ion

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The oxidation of hydrazoic acid in perchloric acid in the absence of added chloride under pseudo first-order conditions ([HN3] » [AuCl 4 ]) is first order in [Au(III)]. Michaelis–Menten type of dependence (linear plots of k −1obs vs [HN3]−1) is observed with respect to [HN3]. The k obs is independent of ionic strength and the plot between k −1obs and [H+] is linear. The inner-sphere mechanism is consistent with the formation of an axial complex (K = 25 dm3 mol−1) between AuCl3(HO) ion and HN3 prior to its rate determining decomposition (k = 0.0182 s−1). It is inferred that the free radicals N 3 do not oxidise Au(II). The reaction becomes outer-sphere in the presence of added Cl ions which are inferred to form a cage around the hydronium ion surrounding the AuCl 4 ions. The penetration of N 3 through the cage is rate controlling and within the cage, the electron transfer from N 3 ion to AuCl 4 is fast. The value of the rate determining constant k 2 is 0.547 dm3 mol−1 s−1 and the equilibrium constant K Cl for the cage formation is 5 dm3 mol−1 at 25 °C. It is calculated that the minimum HN3 concentration required before the reaction exhibits zero-order dependence in HN3 is 0.31 mol dm−3 when [H+] = 0.18 mol dm−3 at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Scheme 2

Similar content being viewed by others

Notes

  1. The instrument having no facility for maintaining the constant temperature was not used for the kinetic study.

  2. In making the calculations [Cl] equal to the initial gold(III) complex is assumed to be present.

  3. $$ [\hbox{AuCl}_{3}(\hbox{H}_{2}\hbox{O})\hbox{N}_{3}^{-}] =\frac{KK_{\rm a}[\hbox{AuCl}_{3}(\hbox{H}_{2}\hbox{O})][\hbox{HN}_{3}]} {[\hbox{H}^{+}]}=\frac{K_1 K_{\rm H}[\hbox{AuCl}_{3}(\hbox{H}_{2} \hbox{O})][\hbox{HN}_{3}]}{[\hbox{H}^{+}]} $$
  4. The rates reported for the corresponding reaction with IrCl 3−6 in [11] were measured at the Centre for Fast Kinetics Research at the University of Texas at Austin.

References

  1. Audrieth LF (1934) Chem Rev 15:169

    Article  CAS  Google Scholar 

  2. Evans BL, Yoffe AD, Gray P (1959) Chem Rev 59:515

    Article  CAS  Google Scholar 

  3. Gray P (1963) Q Rev Chem Soc 17:441

    Article  CAS  Google Scholar 

  4. Stedman G (1979) Adv Inorg Chem Radiochem 22:113

    CAS  Google Scholar 

  5. (a) Murmann RK, Sullivan JC, Thompson RC (1968) Inorg Chem 7:1876; (b) Wells CF, Mays D (1969) J Chem Soc A:2175; (c) Thompson RC, Sullivan JC (1970) Inorg Chem 9:1590

  6. (a) Wells CF, Mays D (1968) J Chem Soc A:1622; (b) Davies G, Kirschenbaum LJ, Kustin K (1969) Inorg Chem 8:663; (c) Treindl CFL, Mrakova M (1977) Chem Zvesti 31:145

  7. Heyward MP, Wells CF (1988) J Chem Soc Dalton Trans 1331

  8. Suwyn MA, Hamm RE (1967) Inorg Chem 6:2150

    Article  CAS  Google Scholar 

  9. Wells CF, Husain M (1969) J Chem Soc A:2981

  10. Brown JK, Fox D, Heyward MP, Wells CF (1979) J Chem Soc Dalton Tran 735

  11. Goyal B, Mehrotra M, Prakash A, Mehrotra RN (2000) Inorg React Mech 1:289

    CAS  Google Scholar 

  12. Borish ET, Kirschenbaum LJ (1984) Inorg Chem 23:2355

    Article  CAS  Google Scholar 

  13. Sen Gupta KK, Sanyal A, Ghosh SP (1995) J Chem Soc Dalton Trans 1227

  14. Bandyopadhyay P, Dhar BB, Bhattacharyya J, Mukhopadhyay S (2003) Eur J Inorg Chem 4308

  15. Wilmarth WK, Stanbury DM, Byrd JE, Po HN, Chua C-P (1983) Coord Chem Rev 51:155

    Article  CAS  Google Scholar 

  16. Ram MS, Stanbury DM (1986) J Phys Chem 90:3691

    Article  CAS  Google Scholar 

  17. Marus RA (1963) J Phys Chem 67:853; (1964) Ann Rev Phys Chem 15:155; (1965) J Chem Phys 43:679

    Google Scholar 

  18. Soni V, Sindal RS, Mehrotra RN (2007) Inorg Chim Acta 360:3141

    Article  CAS  Google Scholar 

  19. (a) Soni V, Mehrotra RN (2003) Transition Met Chem 28:893; (b) Sengupta KK, Basu B (1983) Transition Met Chem 8:6

  20. Soni V, Sindal RS, Mehrotra RN (2005) Polyhedron 24:1167

    Article  CAS  Google Scholar 

  21. Zou J, Guo Z, Parinson JA, Chen Y, Sadler PJ (1999) Chem Commun 1359

  22. Drougge L, Elding LI (1987) Inorg Chem 26:1073

    Article  Google Scholar 

  23. (a) Elding LI, Skibsted LH (1986) Inorg Chem 25:4084; (b) Elding LI, Olsson LF (1982) Inorg Chem 21:779

  24. Ericson A, Arthur JC, Coleman RS, Elding LI, Elmorth SKC (1998) J Chem Soc Dalton Tran 1687

  25. Ericson A, Elding LI, Elmorth SKC (1997) J Chem Soc Dalton Tran 1159

  26. (a) Elmorth SKC, Elding LI (1996) Inorg Chem 35:2337; (b) Elmorth S, Skibsted LH, Elding LI (1989) Inorg Chem 28:2703

  27. (a) Berglund J, Voigt R, Fronaeus S, Elding LI (1994) Inorg Chem 33:3346; (b) Sengupta KK, Sanyal A, Sen PK (1994) Transition Met Chem 19:534

  28. Sengupta KK, Das S, Sen Gupta S (1988) Transition Met Chem 13:261

    Article  CAS  Google Scholar 

  29. Sen Gupta KK, Basu B (1984) Polyhedron 3:805

    Article  CAS  Google Scholar 

  30. Skibsted LH (1986) Adv Inorg Bioinorg Mech 4:137

    CAS  Google Scholar 

  31. References 3–15 in Ref. 21.

  32. Cotton FA, Wilkinson G (1986) Advanced inorganic chemistry, 3rd edn. Wiley Eastern. New Delhi, p 353

    Google Scholar 

  33. Fry FH, Hamilton GA, Turkevich J (1966) Inorg Chem 5:1943

    Article  CAS  Google Scholar 

  34. Rekha Ms, Prakash A, Mehrotra RN (1991) Can J Chem 71:2164

    Article  Google Scholar 

  35. Seddon EA, Seddon KR (1984) The chemistry of ruthenium. Elsevier, p 251

  36. Feigl F, Anger V, Oesper R (1972) Spot tests in inorganic analysis, 6th English edn. Elsevier Amsterdam, p 241

    Google Scholar 

  37. Martell AE, Smith RM (1989) Critical stability constants, vol 4. Plenum, New York, p 45

  38. Robb W (1967) Inorg Chem 6:382

    Article  CAS  Google Scholar 

  39. Peshchevitskii BI, Belevantsev VI, Kurbatova NV (1971) Russ J Inorg Chem (Engl Transl) 16:1007

    Google Scholar 

  40. Cattalini L, Tobe ML (1966) Coord Chem Rev 1:106

    Article  Google Scholar 

  41. Volger A, Wright RE, Kunkley H (1980) Angew Chem Int Ed Engl 19:717

    Article  Google Scholar 

  42. Mehrotra RN, Kirschenbaum LJ (1989) Inorg Chem 28:4327

    Article  CAS  Google Scholar 

  43. Kouadio I, Kirschenbaum LJ, Mehrotra RN (1990) J Chem Soc Dalton Trans 1929

  44. Kouadio I, Kirschenbaum LJ, Mehrotra RN, Sun Y (1990) J Chem Soc Dalton Trans 2123

  45. Berglund J, Elding LI (1995) Inorg Chem 34:513

    Article  CAS  Google Scholar 

  46. Cattalini L, Marangoni G, Paolucci G, Pitteri B, Tobe ML (1987) Inorg Chem 26:2450

    Article  CAS  Google Scholar 

  47. Refs. 17(b) and 26

  48. (a) Sen Gupta KK, Basu B, Sen Gupta S, Nandi S (1983) Polyhedron 2:983; (b) Ref. 27

  49. Sen Gupta KK, Maiti S, Ghosh SP (1980) Indian J Chem 19(A):869

    Google Scholar 

  50. Brown A, Higginson WCE (1972) J Chem Soc Dalton Trans 166

  51. Foresberg HG, Widdel H, Erwall LG (1960) J Chem Educ 37:44

    Article  Google Scholar 

  52. Basalo F, Pearson RG (1977) Mechanism of inorganic reactions, 2nd edn. Wiley Eastern, New Delhi, p 414

    Google Scholar 

  53. Ref. 30, p 1044

  54. Latimer WM (1953) The oxidation states of the elements and their potentials in aqueous solutions, 2nd edn. Prentice-Hall, p 197

  55. Butler J, Land EJ, Swallow AJ, Pritz W (1984) Radiat Phys Chem 23:65

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the UGC, F.12-59/1997 and F.12-147/2001, for the financial support of the work. Thanks are also due to Kriti Mehrotra, my grand daughter, at Cornell University, in helping with certain references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj N. Mehrotra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soni, V., Mehrotra, R.N. Mechanism of the oxidation of hydrazoic acid by tetrachloroaurate(III) ion. Transition Met Chem 33, 367–376 (2008). https://doi.org/10.1007/s11243-007-9052-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-007-9052-9

Keywords

Navigation