Skip to main content
Log in

A Stopped-flow Study on the Kinetics and Mechanism of CO2 Uptake by the cis-[Cr(1,10-phenanthroline)2(OH2)2]3+ Complex Ion

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of the reaction between gaseous CO2 and the cis-[Cr(phen)2(OH2)2]3+ ion leading to the formation of the carbonato complex ion, have been studied over the pH and temperature ranges: 3 < pH < 6 and 5 < T < 25 °C, respectively, at a constant ionic strength of 1 m (NaClO4). Investigations were carried out using the stopped-flow spectrophotometry technique in the UV–Vis range: 340–700 nm. The major reactant species in the pH range studied was cis-[Cr(phen)2(OH)(OH2)]2+ ion, which underwent reaction with CO2 to form cis-[Cr(phen)2(OH2)(HCO3)]2+ ion. Subsequently, slower ring closure of the latter species to form the bidentate carbonato chelate was observed. The possible mechanism has been discussed and the activation parameters ΔH and ΔS were also determined for the reaction studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Manoharan, in Antisense Drug Technology, Principles, Strategies, and Applications, S. T. Crooke, (Ed.), M. Dekker, New York, Basel, 2001.

  2. H. Astrom R. Stromberg (2001) Nucleosides, Nucleotides Nucleic Acids 20 1385 Occurrence Handle1:CAS:528:DC%2BD3MXmslGhtLo%3D

    CAS  Google Scholar 

  3. J.-T. Hwang F.E. Baltasar D.L. Cole D.S. Sigman C.B. Chen M.M. Greenberg (2003) Bioorg. Med. Chem. Lett. 11 2321 Occurrence Handle1:CAS:528:DC%2BD3sXjtFWhsLc%3D

    CAS  Google Scholar 

  4. G.N. Grimm A.S. Boutorine P. Lincoln B. Nordén C. Héléne (2002) Chem. Biol. Chem. 3 324 Occurrence Handle1:CAS:528:DC%2BD38XislGgtr0%3D

    CAS  Google Scholar 

  5. D.J. Hurley Y. Tor (2002) J. Am. Chem. Soc. 124 3749 Occurrence Handle1:CAS:528:DC%2BD38XhslOgtb4%3D

    CAS  Google Scholar 

  6. D.T Odom E.A. Dill J.K. Barton (2001) Nucl. Acids Res. 29 2026 Occurrence Handle10.1093/nar/29.10.2026 Occurrence Handle1:CAS:528:DC%2BD3MXktlagsro%3D

    Article  CAS  Google Scholar 

  7. S. Content A. Kirsch-De Mesmaeker (1997) J. Chem Soc. Faraday Trans. 93 1089 Occurrence Handle10.1039/a607008f Occurrence Handle1:CAS:528:DyaK2sXitlKmsbY%3D

    Article  CAS  Google Scholar 

  8. D. Jacewicz B. Banecki A. Dąbrowska M. Woźniak L. Chmurzyński (2004) Inorg. Chim. Acta 357 4467 Occurrence Handle10.1016/j.ica.2004.06.044 Occurrence Handle1:CAS:528:DC%2BD2cXhtVWjurfI

    Article  CAS  Google Scholar 

  9. D. Jacewicz, B. Banecki, A. Łapińska, A. D browska, M. Woźniak and L. Chmurzyński, Proc. XX IUPAC Symposium on Photochemistry, Granada, P–142, 349 (2004).

  10. D. Jacewicz A. Dąbrowska B. Banecki I. Kolisz M. Woźniak L. Chmurzyński (2004) Transition Met. Chem. 30 209

    Google Scholar 

  11. A. Dąbrowska D. Jacewicz A. Łapińska B. Banecki A. Figarski M. Szkatuła J. Lehman J. Krajewski J. Kubasik-Juraniec M. Woźniak L. Chmurzyński (2005) Biochem. Biophys. Res. Comm. 326 313

    Google Scholar 

  12. D. Jacewicz A. Dąbrowska A. Łapińska B. Banecki M. Woźniak L. Chmurzyński (2004) Free Rad. Biol. Med. 37 IssueIDSuppl. 1 101

    Google Scholar 

  13. W.K. Wan, Ph. D. Thesis, State University of New York (SUNY) at Buffalo, New York, 1978, Ch. 2.

  14. R.G. Insskeep J. Bjerrum (1961) Acta Chem. Scand. 15 62

    Google Scholar 

  15. R.G. Inskeep M. Benson (1961) J. Inorg. Nucl. Chem. 20 290 Occurrence Handle10.1016/0022-1902(61)80278-9 Occurrence Handle1:CAS:528:DyaF38XltFeguw%3D%3D

    Article  CAS  Google Scholar 

  16. M. Szabelski K. Guzow A. Rzeska J. Malicka M. Przyborowska W. Wiczk (2002) J. Photochem. Photobiol. 152 73 Occurrence Handle10.1016/S1010-6030(02)00187-9 Occurrence Handle1:CAS:528:DC%2BD38XmslOjsbo%3D

    Article  CAS  Google Scholar 

  17. E. Chaffee T.P. Dasgupta G.M. Harris (1973) J. Am. Chem. Soc. 95 4169 Occurrence Handle10.1021/ja00794a011 Occurrence Handle1:CAS:528:DyaE3sXksFyit7g%3D

    Article  CAS  Google Scholar 

  18. T.P. Dasgupta G.M. Harris (1977) J. Am. Chem. Soc. 99 2490 Occurrence Handle10.1021/ja00450a015 Occurrence Handle1:CAS:528:DyaE2sXhslyitrc%3D

    Article  CAS  Google Scholar 

  19. M.L. Johanson J.J. Correira D.A. Yphantis H.R. Halvorson (1981) Biophys. J. 36 575

    Google Scholar 

  20. J.F. Nagel L.A. Parodi R.H. Lozier (1982) Biophys. J. 38 161

    Google Scholar 

  21. J.R. Knutson J.M. Beechem L. Brand (1983) Chem. Phys. Lett. 102 501 Occurrence Handle10.1016/0009-2614(83)87454-5 Occurrence Handle1:CAS:528:DyaL2cXkt1aqtw%3D%3D

    Article  CAS  Google Scholar 

  22. M. Maeder A. Zuberbuchler (1990) Anal. Chem. 64 2220

    Google Scholar 

  23. B. Betłakowska B. Banecki L. Łankiewicz W. Wiczk (2001) Pol. J. Chem. 75 401

    Google Scholar 

  24. H. Mauser J.Z. Polster (1995) Naturforsch 10a 1031

    Google Scholar 

  25. T.P. Dasgupta G.M. Harris (1975) J. Am. Chem. Soc. 97 1733 Occurrence Handle10.1021/ja00840a019 Occurrence Handle1:CAS:528:DyaE2MXhs1Srsrg%3D

    Article  CAS  Google Scholar 

  26. T.P. Dasgupta G.M. Harris (1971) J. Am. Chem. Soc. 93 91 Occurrence Handle10.1021/ja00730a017 Occurrence Handle1:CAS:528:DyaE3MXks1Sksw%3D%3D

    Article  CAS  Google Scholar 

  27. T.P. Dasgupta G.M. Harris (1974) Inorg. Chem. 13 1275 Occurrence Handle10.1021/ic50136a004 Occurrence Handle1:CAS:528:DyaE1MXhsFOls70%3D

    Article  CAS  Google Scholar 

  28. R. Eldik Particlevan T.P. Dasgupta G.M. Harris (1975) Inorg. Chem. 14 2573

    Google Scholar 

  29. X. Yin J.R. Moss (1999) Coord. Chem. Rev. 181 27 Occurrence Handle10.1016/S0010-8545(98)00171-4 Occurrence Handle1:CAS:528:DyaK1cXnvVSrs7Y%3D

    Article  CAS  Google Scholar 

  30. D.A. Palmer T.P. Dasgupta P. Kelm (1978) Inorg. Chem. 17 1173 Occurrence Handle1:CAS:528:DyaE1cXhsF2isLg%3D

    CAS  Google Scholar 

  31. A. Surdykowski E. Danilczuk (1988) Pol. J. Chem. 62 615 Occurrence Handle1:CAS:528:DyaK3cXis1ejtw%3D%3D

    CAS  Google Scholar 

  32. J. Chatłas E. Danilczuk M. Nasiadko T. Raszkowska (2002) Transition Met. Chem. 27 346

    Google Scholar 

  33. D.A. Buckingham C.R. Clark (1993) Inorg. Chem. 32 5405 Occurrence Handle10.1021/ic00075a075 Occurrence Handle1:CAS:528:DyaK3sXmtlCqtr4%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lech Chmurzyński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacewicz, D., Łapińska, A., Dąbrowska, A. et al. A Stopped-flow Study on the Kinetics and Mechanism of CO2 Uptake by the cis-[Cr(1,10-phenanthroline)2(OH2)2]3+ Complex Ion. Transition Met Chem 31, 111–117 (2006). https://doi.org/10.1007/s11243-005-6372-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-005-6372-5

Keywords

Navigation