Skip to main content
Log in

Ion-Exchange Inverse Problem for Low-Salinity Coreflooding

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The data input for reservoir simulation of low-salinity waterflood in sandstones includes adsorption isotherms, or equilibrium constants for all cation-exchange reactions, and cation-exchange capacity (CEC). We develop a novel method for determination of those functions from the laboratory data of low-salinity coreflooding; the inverse problem is solved; rather, matching is applied. Changing independent time variable to Lagrangian coordinate transforms the governing system for two-phase multicomponent flow into a single-phase system of mass balance equations for each ion and the volumetric balance equation for water. It allows determining the adsorption isotherms for all ions, or equilibrium constants and CEC, from the breakthrough ion concentrations, using the exact solution of ion-exchange inverse problem. Further, the fractional flow and relative permeability can be determined from the effluent water cut and pressure drop histories, using the Welge’s and JBN methods; here each data point corresponds to the breakthrough values of ion concentrations. We show that for four-ion waterflooding, only two constants from two equilibrium constants and CEC can be determined. Treatment of five coreflood data sets shows a close agreement between the laboratory data and the results of inverse problem solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

a :

Adsorbed (stationary phase) concentration (eq/l)

c :

Vector of ion concentrations (eq/l)

CEC:

Cation-exchange capacity (eq/l)

f :

Fractional flow for water

D :

Front velocity in (xD, tD) coordinates

F :

Density in conservation law for lifting equation

k :

Permeability (L2)

k ij :

Ion-exchange equilibrium coefficient between cations i and j

k r :

Relative permeability

L :

Reservoir size (L)

P :

Pressure [M T−2 L−1]

p :

Dimensionless pressure

R :

Symbol for rarefaction wave

s :

Phase saturation

S :

Symbol for shock wave

s or :

Residual oil saturation

t :

Time (T)

t D :

Dimensionless time

u :

Flow rate [L T−1]

U :

Flux in conservation law for lifting equation

V :

Front velocity in (xD, φ) coordinates

x :

linear coordinate (L)

x D :

Dimensionless linear coordinate

α L :

Dispersivity coefficient (L)

θ :

Contact angle

λ :

Eigenvalue

Λ :

Dimensionless total mobility of water and oil phases

μ :

Dimensionless viscosity ratio between oil and water

η :

Self-similar variable for coordinates (xD, φ)

τ :

Delay time (T)

σ :

Interfacial tension [M T−2]

ϕ :

Porosity

φ :

Stream function

ε D :

Schmidt’s number

1:

Na

2:

Ca

3:

Mg

4:

Cl

o:

Oil

r:

Relative

w:

Water

I:

Initial value

J:

Injected value

References

  • Al-Sarihi, A., You, Z., Behr, A., Genolet, L., Kowollik, P., Zeinijahromi, A., Bedrikovetsky, P.: Coreflood planning criteria for relative permeability computation by Welge-JBN method. APPEA J. 58, 664–668 (2018). https://doi.org/10.1071/AJ17194

    Article  Google Scholar 

  • Alvarez, A.C., Hime, G., Marchesin, D., Bedrikovetsky, P.: The inverse problem of determining the filtration function and permeability reduction in flow of water with particles in porous media. Transp. Porous Media 70, 43–62 (2007)

    Article  Google Scholar 

  • Appelo, C.A.J., Hendricks, J.A., Van Veldhuisen, M.: Flushing factors and sharp front solution for solute transport with multicomponent ion exchange. J. Hydrol. 146, 89–113 (1993)

    Article  Google Scholar 

  • Appelo, C.A.J., Rolle, M.: PHT3D: a reactive multicomponent transport model for saturated porous media. Groundwater 48(5), 627–632 (2010)

    Article  Google Scholar 

  • Barenblatt, G.I., Entov, V.M., Ryzhik, V.M.: Theory of Fluid Flows through Natural Rocks. Kluwer, Dordrecht (1989)

    Google Scholar 

  • Bedrikovetsky, P.: Mathematical Theory of Oil and Gas Recovery. Kluwer Academic, Dordrecht (1993)

    Book  Google Scholar 

  • Bedrikovetsky, P.G.: WAG displacements of oil-condensates accounting for hydrocarbon ganglia. Transp. Porous Media 52(2), 229–266 (2003)

    Article  Google Scholar 

  • Borazjani, S., Bedrikovetsky, P., Farajzadeh, R.: Exact solution for non-self-similar wave-interaction problem during two-phase four-component flow in porous media. In: Abstract and Applied Analysis (2014)

  • Borazjani, S., Roberts, A.J., Bedrikovetsky, P.: Splitting in systems of PDEs for two-phase multicomponent flow in porous media. Appl. Math. Lett. 53, 25–32 (2016)

    Article  Google Scholar 

  • Borazjani, S., Behr, A., Genolet, L., Van Der Net, A., Bedrikovetsky, P.: Effects of fines migration on low-salinity waterflooding: analytical modelling. Transp. Porous Media 116(1), 213–249 (2017)

    Article  Google Scholar 

  • Borazjani, S., Bedrikovetsky, P.: Exact solutions for two-phase colloidal-suspension transport in porous media. Appl. Math. Model. 44, 296–320 (2017)

    Article  Google Scholar 

  • Brady, P.V., Morrow, N.R., Fogden, A., Deniz, V., Loahardjo, N.: Electrostatics and the low salinity effect in sandstone reservoirs. Energy Fuels 29(2), 666–677 (2015)

    Article  Google Scholar 

  • Buckley, S., Leverett, M.: Mechanism of fluid displacement in sands. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  • Cernik, M., Barmettler, K., Grolimund, D., Rohr, W., Borkovec, M., Sticher, H.: Cation transport in natural porous media on laboratory scale: multicomponent effects. J. Contam. Hydrol. 16(4), 319–337 (1994)

    Article  Google Scholar 

  • Coleman, T.F., Li, Y.: An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)

    Article  Google Scholar 

  • Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves, vol. 21. Springer, Berlin (1999)

    Google Scholar 

  • Dang, C., Nghiem, L., Nguyen, N., Chen, Z., Nguyen, Q.: Mechanistic modelling of low salinity water flooding. J. Pet. Sci. Eng. 146, 191–209 (2016)

    Article  Google Scholar 

  • Fathi, S.J., Austad, T., Strand, S.: “Smart Water” as a wettability modifier in chalk: the effect of salinity and ionic composition. Energy Fuels 24(4), 2514–2519 (2010)

    Article  Google Scholar 

  • Farajzadeh, R., Matsuura, T., van Batenburg, D., Dijk, H.: Detailed modeling of the alkali/surfactant/polymer (ASP) process by coupling a multipurpose reservoir simulator to the chemistry package PHREEQC. SPE Res. Eval. Eng. 15(4), 423–435 (2012)

    Article  Google Scholar 

  • Farajzadeh, R., Guo, H., Van Winden, J., Bruining, J.: Cation exchange in the presence of oil in porous media. ACS Earth Space Chem. 1(2), 101–112 (2017)

    Article  Google Scholar 

  • Fredriksen, S.B., Rognmo, A.U., Fernø, M.A.: Pore-scale mechanisms during low salinity waterflooding: water diffusion and osmosis for oil mobilization. In: SPE paper 180060, Presented at SPE, Bergen, Norway (2016)

  • Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Uspekhi Matematicheskikh Nauk 14(2), 87–158 (1959). (Am. Math. Soc. Transl. Ser. 2, 295, 1963)

    Google Scholar 

  • Helfferich, F., Klein, G.: Multicomponent Chromatography. Dekker, New York (1970)

    Google Scholar 

  • Hirasaki, G.J.: Application of the theory of multicomponent, multiphase displacement to three-component, two-phase surfactant flooding. Soc. Pet. Eng. J. 21(2), 191–204 (1981)

    Article  Google Scholar 

  • Hirasaki, G.J.: Thermodynamics of thin films and three-phase contact regions. In: Interfacial Phenomena in Petroleum Recovery, NY (1991)

  • Hirasaki, G.J.: Structural interactions in the wetting and spreading of van der Waals fluids. J. Adhes. Sci. Technol. 7(3), 285–322 (1993)

    Article  Google Scholar 

  • Jerauld, G.R., Lin, C., Webb, K.J., Seccombe, J.C.: Modelling low-salinity waterflooding. SPE Reserv. Eval. Eng. 11(6), 1000 (2008)

    Article  Google Scholar 

  • Jeong, C.W., Lee, K.J.: Propagation of concentration waves through a sorption medium with simultaneous ion exchange and electrolyte adsorption. Waste Manag. 12(1), 61–73 (1992)

    Article  Google Scholar 

  • Johansen, T., Winther, R.: The Riemann problem for multicomponent polymer flooding. SIAM J. Math. Anal. 20(4), 908–929 (1989)

    Article  Google Scholar 

  • Johnson, E., Bossler, D., Naumann, V.: Calculation of relative permeability from displacement experiments. Trans. AIME 216, 370–372 (1959)

    Google Scholar 

  • Jones, S., Roszelle, W.: Graphical techniques for determining relative permeability from displacement experiments. J. Pet. Technol. 30, 807–817 (1978)

    Article  Google Scholar 

  • Khorsandi, S., Shen, W., Johns, R.T.: Global Riemann solver and front-tracking approximation of there-component gas floods. Q. Appl. Math. 74, 607–632 (2015)

    Article  Google Scholar 

  • Khorsandi, S., Qiao, C., Johns, R.T.: Displacement efficiency for low salinity polymer flooding including wettability alteration. SPE J. 22(02), 417–430 (2017)

    Article  Google Scholar 

  • Kuznetsov, D., Cotterill, S., Giddins, M.A., Blunt, M.J.: Low-Salinity waterflood saimulation: mechanistic and phenomenological models. In: SPE-174615-MS, Presented at SPE Asia pacific Enhanced Oil Recovery Conference, Kuala Lumpur (2015)

  • Lake, L.W., Johns, R., Rossen, W., Pope, G.: Fundamentals of Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (2014)

    Google Scholar 

  • Lotfollahi, M., Varavei, A., Delshad, M., Farajzadeh, R., Pope, G.A.: Development of a hybrid black-oil/surfactant enhanced oil recovery reservoir simulator. J. Pet. Sci. Eng. 133, 130–146 (2015)

    Article  Google Scholar 

  • Mahani, H., Berg, S., Ilic, D., Bartels, W.-B., Joekar-Niasar, V.: Kinetics of low-salinity-flooding effect. SPE J. 20(1), 8–20 (2015a)

    Article  Google Scholar 

  • Mahani, H., Keya, A.L., Berg, S., Bartels, W.-B., Nasralla, R., Rossen, W.R.: Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy Fuels 29(3), 1352–1367 (2015b)

    Article  Google Scholar 

  • Morrow, N., Buckley, J.: Improved oil recovery by low-salinity waterflooding. J. Pet. Technol. 63(5), 106–112 (2011)

    Article  Google Scholar 

  • Nasralla, R.A., Snippe, J.R.; Farajzadeh, R.: Coupled geochemical-reservoir model to understand the interaction between low Salinity brines and carbonate Rock. In: SPE 174661, SPE Asia pacific Enhanced Oil Recovery conference, Tulsa, OK (2015)

  • Omekeh, A.V., Evje, S., Friis, H.A.: Modeling of low salinity effects on sandstone rocks. Int. J. Numer. Anal. Model. 1(1), 1–18 (2013)

    Google Scholar 

  • Omekeh, A.V., Friis, H.A., Evje, S., Fjelde, I.: A model for low salinity flooding experiments: dissolution and ion exchange. J. Porous Media 18, 189–213 (2015)

    Article  Google Scholar 

  • Pires, A.P., Bedrikovetsky, P.G., Shapiro, A.A.: A splitting technique for analytical modelling of two-phase multicomponent flow in porous media. J. Pet. Sci. Eng. 51(1), 54–67 (2006)

    Article  Google Scholar 

  • Polyanin, A.D., Zhurov, A.I., Vyaz’min, A.V.: Exact solutions of heat and mass transfer equations. Matematica Contemporanea 19, 105–127 (2000)

    Google Scholar 

  • Polyanin, A.D., Manzhirov, A.V.: Handbook of Mathematics for Engineers and Scientists. CRC Press, New York (2006)

    Book  Google Scholar 

  • Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman and Hall/CRC, New York (2011)

    Google Scholar 

  • Pope, G.A., Lake, L.W., Helfferich, F.G.: Cation exchange in chemical flooding: part 1-basic theory without dispersion. SPE J. 18(06), 418–434 (1978)

    Google Scholar 

  • Pope, G.A.: The application of fractional flow theory to enhanced oil recovery. SPE J. 20, 191–205 (1980)

    Google Scholar 

  • RezaeiDoust, A., Puntervold, T., Austad, T.: Chemical verification of the EOR mechanism by using low saline/smart water in sandstone. Energy Fuel 25(5), 2151–2162 (2011)

    Article  Google Scholar 

  • Singh, K., Bijeljic, B., Blunt, M.J.: Imaging of oil layers, curvature and contact angle in a mixed-wet and a water-wet carbonate rock. Water Resour. Res. 52(3), 1716–1728 (2016)

    Article  Google Scholar 

  • Shalabi, E., Sepehrnoori, K.: Low salinity and engineered water injection for sandstone and carbonate reservoirs. Gulf Professional Publishing, New York (2017)

    Google Scholar 

  • Shapiro, A.A., Stenby, E.H.: Thermodynamics of the multicomponent vapor–liquid equilibrium under capillary pressure difference. Fluid Phase Equilib. 178(1–2), 17–32 (2001)

    Article  Google Scholar 

  • Shapiro, A.A.: Two-phase immiscible flows in porous media: the mesocopic Maxwell–Stefan approach. Transp. Porous Media 107(2), 335–363 (2015)

    Article  Google Scholar 

  • Shapiro, A.A.: Mechanics of the separating surface for a two-phase co-current flow in a porous medium. Transp. Porous Media 112(2), 489–517 (2016)

    Article  Google Scholar 

  • Shampine, L.: Solving hyperbolic PDEs in MATLAB. Appl. Num. Anal. Comput. Math. 2(3), 346–358 (2005a)

    Article  Google Scholar 

  • Shampine, L.F.: Two-step Lax-Friedrichs method. Appl. Math. Lett. 18(10), 1134–1136 (2005b)

    Article  Google Scholar 

  • Sheng, J.: Modern Chemical Enhanced Oil Recovery. Gulf Professional Publishing, New York (2011)

    Google Scholar 

  • Sheng, J.: Critical review of low-salinity waterflooding. J. Pet. Sci. Eng. 120, 216–224 (2014)

    Article  Google Scholar 

  • Strand, S., Austad, T., Puntervold, T., Aksulu, H., Haaland, B., RezaeiDoust, A.: Impact of plagioclase on the low salinity EOR-effect in sandstone. Energy Fuel 28(4), 2378–2383 (2014)

    Article  Google Scholar 

  • Tavassoli, S., Kazemi Nia Korrani, A., Pope, G.A., Sepehrnoori, K.: Low-salinity surfactant flooding—a multimechanistic enhanced-oil-recovery method. SPE J. 21(03), 744–760 (2016)

    Article  Google Scholar 

  • Tikhonov, A., Arsenin, V., John, F.: Solutions of Ill-posed Problems. Winston, Washington DC (1997)

    Google Scholar 

  • Venkatraman, A., Hesse, M.A., Lake, L.W., Johns, R.T.: Analytical solutions for flow in porous media with multicomponent cation exchange reactions. Water Resour. Res. 50(7), 5831–5847 (2014)

    Article  Google Scholar 

  • Voegelin, A., Vulava, V., Kuhnen, F., Kretzschmar, R.: Multicomponent transport of major cations predicted from binary adsorption experiments. J. Contam. Hydrol. 46(3), 319–338 (2000)

    Article  Google Scholar 

  • Wagner, D.H.: Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions. J. Differ. Equat. 68, 118–136 (1987)

    Article  Google Scholar 

  • Welge, H.J.: A simplified method for computing oil recovery by gas or water drive. J. Pet. Technol. 4(04), 91–98 (1952)

    Article  Google Scholar 

  • Yuan, H., Shapiro, A.A.: Induced migration of fines during waterflooding in communicating layer-cake reservoirs. J. Pet. Sci. Eng. 78(3), 618–626 (2011)

    Article  Google Scholar 

  • Zahid, A., Stenby, E.H., Shapiro, A.: Improved oil recovery in chalk: Wettability alteration or something else?. In: SPE Paper 131300-MS, Presented at SPE Europec/EAGE Annual Conference and Exhibition, Barcelona (2010)

  • Zahid, A., Shapiro, A., Skauge, A.: Experimental studies of low salinity water flooding carbonate: a new promising approach. In: SPE Paper 155625-M, Presented at SPE EOR Conference at Oil and Gas West Asia, Muscat (2012)

  • Zeinijahromi, A., Farajzadeh, R., Bruining, J.: Effect of fines migration on oil–water relative permeability during two-phase flow in porous media. Fuel 176, 222–236 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bedrikovetsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Reformulation of the Welge’s and JBN Methods in Invariant Terms

In this appendix, we derive the solution for two inverse problems for “normal” waterflood, where c = const in Eq. (1), i.e. we reproduce the classical Welge and JBN methods in the form, which is used in the text (Welge 1952; Johnson et al. 1959; Jones and Roszelle 1978). The Welge’s method determines fractional flow function f(s) from the breakthrough water cut f(1, tD) (Fig. 2). The JBN method determines total mobility Λ(s) from the pressure drop across the core Δp(tD).

The derivation is based on Green’s theorem: the following double integral over the plane region Δ bounded by a simple closed curve ∂Δ is equal to the line integral around the curve ∂Δ (Polyanin and Manzhirov 2006)

$$ \iint\limits_{\Delta } {\left( {\frac{\partial s}{{\partial t_{\text{D}} }} + \frac{\partial f}{{\partial x_{\text{D}} }}} \right){\text{d}}x_{\text{D}} {\text{d}}t_{\text{D}} = \oint\limits_{\partial \vartriangle } {f{\text{d}}t_{\text{D}} - s{\text{d}}x_{\text{D}} } } $$
(A-1)

Integrate both sides of Eq. (1) with c = const over the inner of triangle Δ: (0, 0) → (1, 0) → (1, tD) → (0, 0) in plane (xD, tD) (Fig. 3c). As it follows from Green’s theorem (A-1),

$$ \oint\limits_{\partial \vartriangle } {f{\text{d}}t_{\text{D}} - s{\text{d}}x_{\text{D}} } = 0 $$
(A-2)

Calculation of contour integral (A-1) over each side of the triangle (0, 0) → (1, 0), (1, 0) → (1, tD), and (0, 0) → (1, tD) accounting for initial and boundary conditions yields:

$$ - s^{I} ;\;\int\limits_{0}^{t} {f\left( {1,u} \right)} {\text{d}}u;\;f\left( {1,t_{\text{D}} } \right)t_{\text{D}} - s\left( {1,t_{\text{D}} } \right), $$
(A-3)

respectively. Substituting three obtained integrals (A-3) into Eq. (A-1) results in

$$ s\left( {1,t_{\text{D}} } \right) = s^{I} + \int\limits_{0}^{{t_{\text{D}} }} {\left[ {f\left( {1,t_{\text{D}} } \right) - f\left( {1,y} \right)} \right]} {\text{d}}y $$
(A-4)

Corresponding values f(1, tD) and s(1, tD), as calculated by Eq. (A-3), define a parametric curve f = f(s). Usually, a number of moments tDk, k = 1, 2… K, are set, water cut values f(1, tDk) are measured at the corresponding moments, and s(1, tDk) are calculated using Eq. (A-3). It yields the fractional flow curve (sk, fk) as determined in K points.

JBN’s formula for total mobility is obtained by expressing the pressure gradient from Eq. (3) for c = const, integrating in xD from zero to one, changing the integration variable from xD to ξ = 1/tD and taking derivation over 1/tD from both sides of the obtained equality:

$$ \varLambda^{ - 1} \left( {s,\vec{c}} \right) = \frac{\text{d}}{{{\text{d}}y}}\left| {\begin{array}{*{20}c} {} \\ {y = {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle {t_{\text{D}} }$}}} \\ \end{array} } \right.\left( {\Delta p\left( y \right)y} \right) $$
(A-5)

where saturation in left-hand side of Eq. (A-4) corresponds to the outlet xD = 1 at the moment tD.

The above derivations have been performed using just the fact of self-similarity of the direct solution (1) that results in constant saturation along straight lines xD/tD = const. The inverse solutions given by Eqs. (A-3) and (A-4) are independent of the direct solution itself, and the Buckley–Leverett formulae have not been used during the derivations.

Appendix B: Riemann Solution for Single-Phase Ion-Exchange Flow

Following Pope et al. (1978) and Venkatraman et al. (2014), here we present the Riemann solution for system (2224) subject to initial and boundary conditions (25, 26) for one-phase three-component flow with concentration alteration injection. General methods for Riemann solutions of conservation law systems can be found from Gelfand (1959), Courant and Friedrichs (1999), and Polyanin and Manzhirov (2006).

Equation (24) separates from the rest of system (22, 23). Solution of Eq. (24) subject to initial and boundary conditions (25, 26) in self-similar form is:

$$ c_{4} \left( {x_{\text{D}} ,\varphi } \right) = \left\{ {\begin{array}{*{20}c} {c_{4}^{\text{J}} ,} & {\varphi > 0} \\ {c_{4}^{\text{I}} ,} & { - s^{\text{I}} x_{\text{D}} < \varphi < 0} \\ \end{array} } \right. $$
(B-1)

Sorption of Ca and Mg cations yields deceleration of their concentration fronts if compared with the front of the traced water. On the contrary, Cl anion does not adsorb, so the speed of Cl front coincides with the speed of traced water front. Therefore, in (xD, tD) plane, where concentrations of Ca and Mg differ from there initial values, c4 = c J4 (Fig. 5). Substitution of c4 = c J4 into 3 × 3 system (2224) allows for its degeneration into 2 × 2 system (22, 23). The boundary conditions for c2 and c3 remain (26). Let us find the initial conditions.

Mass balance equations for shocks in system (2224) are

$$ \left[ {a_{2} \left( {c_{2} ,c_{3} ,c_{4} } \right)} \right]V = \left[ {c_{2} } \right] $$
(B-2)
$$ \left[ {a_{3} \left( {c_{2} ,c_{3} ,c_{4} } \right)} \right]V = \left[ {c_{3} } \right] $$
(B-3)
$$ 0 \times V = \left[ {c_{4} } \right] $$
(B-4)

where the jump of physics parameter A is the difference between A values ahead and behind the shock: [A] = A+ − A, and V is the shock speed at (xD, φ) coordinate.

Consider shock at φ = 0. Its speed is infinite. So, the solution (B-1) fulfils mass balance equation for chloride. The fast chloride front I → P, which is an indifferent step wave, has a constant speed equal to one in (xD, tD)-plane and infinity in (xD, φ)-coordinates. Tending V to infinity in Eqs. (B-2, B-3) yields the following conditions on the shock I → P with trajectory φ = 0:

$$ \left[ {a_{2} \left( {c_{2} ,c_{3} ,c_{4} } \right)} \right] = \left[ {a_{3} \left( {c_{2} ,c_{3} ,c_{4} } \right)} \right] = 0 $$
(B-5)

The corresponding point behind the front φ = 0 in concentration space is denoted as P (Figs. 4, 5, 6). Two Eqs. (B-5) determine concentrations c P2 and c P3 behind the c4-shock. Geometrically, it corresponds to horizontal straight lines PI for sorption curves of Ca and Mg (Fig. 4a, b, respectively). Now the initial data are transferred from the straight line φ = − sIxD, point I to straight line φ = 0, point P. This allows transforming the 3 × 3 Riemann problem (2226) to the 2 × 2 Riemann problem (22, 23) for decay of discontinuity J → P.

Mass balance equations (B-5) determine the concentrations behind the front φ = 0:

$$ c_{2}^{\text{P}} = c_{2}^{\text{I}} \frac{{ - 1 + \sqrt {1 + 4\left( {\frac{{c_{3}^{\text{I}} + c_{2}^{\text{I}} }}{{c_{1}^{I2} }}} \right)c_{4}^{\text{J}} } }}{{2\left( {c_{3}^{\text{I}} + c_{2}^{\text{I}} } \right)}};\quad c_{3}^{\text{P}} = c_{3}^{\text{I}} \frac{{ - 1 + \sqrt {1 + 4\left( {\frac{{c_{3}^{\text{I}} + c_{2}^{\text{I}} }}{{c_{1}^{{{\text{I}}2}} }}} \right)c_{4}^{\text{J}} } }}{{2\left( {c_{3}^{\text{I}} + c_{2}^{\text{I}} } \right)}} $$
(B-6)

as shown in Fig. 6. According to mass balance conditions (B-5), points P and I are located on the same horizontal straight line (Fig. 4a, b).

Solution of 2 × 2 Riemann problem (22, 23) may consist of two rarefaction and two shock waves. Velocities of rarefaction and shock waves for system (22, 23) are positive, so the solution is compatible with c4 = c J4 in solution (B-1).

Eigenvalues of system (22, 23) λi, i = 2, 3 are:

$$ \lambda_{2} \left( {c_{2} ,c_{3} } \right) = \frac{{a_{33} + a_{22} - \sqrt {\left( {a_{33} - a_{22} } \right)^{2} + 4a_{32} a_{23} } }}{2},\quad a_{ij} = \frac{{\partial a_{i} \left( {c_{2} ,c_{3} ,c_{4}^{\text{J}} } \right)}}{{\partial c_{j} }} $$
(B-7)
$$ \lambda_{3} \left( {c_{2} ,c_{3} } \right) = \frac{{a_{33} + a_{22} + \sqrt {\left( {a_{33} - a_{22} } \right)^{2} + 4a_{32} a_{23} } }}{2} $$
(B-8)

The explicit expressions for first-order partial derivatives are calculated from Eqs. (B-7, B-8); they are cumbersome and are not presented in the text. However, Helfferich and Klein (1970) proves that eigenvalues of matrix aij are positive. Speeds of c2- and c3-shocks are positive too. Therefore, the solution ahead of the anion shock for − sIxD ≤ φ < 0 is constant and equal to initial values. Behind the shock for φ > 0, chloride concentration is constant, so the continuous solutions of 3 × 3 system (2224) are described by 2 × 2 system (22, 23) with c4 = c J4 .

Eigenvectors form two vector fields in (c2, c3)-space, denoted as R2 and R3 (Figs. 6, 7). Choosing c2 as an independent parameter along trajectories yields a system of two ordinary differential equations for λ2 and λ3

$$ \frac{{{\text{d}}c_{3} }}{{{\text{d}}c_{2} }} = \frac{{a_{32} }}{{\lambda_{k} - a_{33} }},\quad k = 2,3 $$
(B-9)

Rarefaction waves (B-7, B-8) for k = 2 and 3 are called the R2 and R3 waves, respectively.

For any shock with finite speed, it follows from Eqs. (B-2B-4) that

$$ V^{ - 1} = \frac{{{\text{d}}\varphi }}{{{\text{d}}x}} = \frac{{\left[ {a_{3} } \right]}}{{\left[ {c_{3} } \right]}} = \frac{{\left[ {a_{2} } \right]}}{{\left[ {c_{2} } \right]}} $$
(B-10)

Now we need to connect points J and P by a sequence of rarefaction and shock waves, given by Eqs. (B-9, B-10), respectively. These are shown in Fig. 7. The blue curve shows rarefaction R3 corresponding to eigenvalue (B-7), and black curves show rarefactions R2 corresponding to eigenvalues (B-8), i.e. R2 is a slow wave, and R3 is a fast wave. The figure also shows so-called shock loci marked by arrows; each point of the curves fulfils the mass balance conditions (B-10) with point P, i.e. a jump to the point P obeys the condition (B-10). Two families of shocks S2 and S3 correspond to two roots of transcendental equations (B-10); here S2 corresponds to slow shocks and S3 to fast shocks. In each point of phase plane (c2, c3), S2-shock locus tangents rarefaction R2, and S3-shock locus tangents rarefaction R3.

Shocks in Fig. 7 fulfil the Lax and Oleinik stability conditions (Bedrikovetsky 1993).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borazjani, S., Behr, A., Genolet, L. et al. Ion-Exchange Inverse Problem for Low-Salinity Coreflooding. Transp Porous Med 128, 571–611 (2019). https://doi.org/10.1007/s11242-019-01260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-019-01260-8

Keywords

Navigation