Skip to main content
Log in

Lattice Boltzmann Simulation of Immiscible Displacement in Porous Media: Viscous Fingering in a Shear-Thinning Fluid

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this work, we investigate immiscible displacement in porous media with the displaced fluid being shear-thinning. We focus on the influence the heterogeneous viscosity field in the shear-thinning fluid brings on viscous fingering, which has received little attention in the existing researches. Lattice Boltzmann simulations of immiscible displacement with a power law model implementation in the displaced fluid are conducted. The lattice Boltzmann algorithm is validated against Newtonian and non-Newtonian flows in a channel. The effects of the shear-thinning property and the viscosity heterogeneity on viscous fingering are considered in the simulations. The results show that with stronger shear-thinning property (lower power law exponent n), there is stronger viscosity heterogeneity in the displaced fluid, and the viscous fingering shows weaker instability. The influence of a heterogeneous viscosity field on viscous fingering is dominated by the viscosity in the low-viscosity regions, while the high-viscosity regions show little influence. The influence of the local viscosity on viscous fingering is dependent upon the local shear rate. A concept of ‘effective field viscosity’ is introduced to quantitatively characterize a heterogeneous viscosity field. A shear rate weighted averaging algorithm is proposed to calculate the effective field viscosity from a heterogeneous viscosity field. The algorithm is tested in several cases and shows good performance to represent the influence of the heterogeneous viscosity field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\bar{L}\) :

Dimensionless interfacial length

\(\bar{t}\) :

Dimensionless lattice time

\(\mathbf e \) :

Velocity vectors

\(\mathbf F \) :

Surface tension

\(\mathbf G \) :

Body force

\(\mathbf u \) :

Velocity vector (lu/ts)

\(\mathbf x \) :

Coordinates of lattice nodes

\(\theta \) :

Static contact angle (\(^{\circ }\))

c :

Lattice speed (lu/ts)

f :

Index distribution function

g :

Pressure distribution function

H :

Width of simulation field (lu)

L :

Interfacial length (lu)

lu :

Lattice length unit

M :

Viscosity ratio (\(\mu _\mathrm{d}/\mu _\mathrm{in}\))

n :

Power law exponent

p :

Pressure

S :

Shear strain tensor

t :

Lattice time

ts :

Lattice time step

u :

Local velocity (lu/ts)

w :

Weighting coefficients

\(\gamma \) :

Shear rate (/ts)

\(\kappa \) :

Parameter to control surface tension magnitude

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\phi \) :

Index function

\(\varPi \) :

Momentum flux tensor

\(\rho \) :

Density

\(\tau \) :

Relaxation factor

eq:

Equilibrium state

d:

Displaced fluid

e :

Effective field value

i :

Directions in the D2Q9 model

in:

Invading fluid

l :

Local node value

m :

Mean value

max:

Maximum value

min:

Minimum value

s:

Sound

References

  • Al-Gharbi, M.S., Blunt, M.J.: Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E 71(1), 016308 (2005)

    Article  Google Scholar 

  • Amirian, E., Dejam, M., Chen, Z.: Performance forecasting for polymer flooding in heavy oil reservoirs. Fuel 216, 83–100 (2018)

    Article  Google Scholar 

  • Artoli, A.M.M.A.M.H.: Mesoscopic Computational Haemodynamics. Ponsen & Looijen, Wageningen (2003)

    Google Scholar 

  • Bandara, U.C., Tartakovsky, A.M., Oostrom, M., Palmer, B.J., Grate, J., Zhang, C.: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media. Adv. Water Resour. 62, 356–369 (2013)

    Article  Google Scholar 

  • Blunt, M., King, P.: Relative permeabilities from two-and three-dimensional pore-scale network modelling. Transp. Porous Media 6(4), 407–433 (1991)

    Article  Google Scholar 

  • Boek, E.S., Chin, J., Coveney, P.V.: Lattice Boltzmann simulation of the flow of non-Newtonian fluids in porous media. Int. J. Mod. Phys. B 17(01n02), 99–102 (2003)

    Article  Google Scholar 

  • Carnahan, N.F., Starling, K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51(2), 635–636 (1969)

    Article  Google Scholar 

  • Dejam, M.: Dispersion in non-Newtonian fluid flows in a conduit with porous walls. Chem. Eng. Sci. 189, 296–310 (2018)

    Article  Google Scholar 

  • Dejam, M., Hassanzadeh, H.: Diffusive leakage of brine from aquifers during Co\(_{2}\) geological storage. Adv. Water Resour. 111, 36–57 (2018)

    Article  Google Scholar 

  • Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in a fracture with porous walls. Adv. Water Resour. 74, 14–25 (2014)

    Article  Google Scholar 

  • Dejam, M., Hassanzadeh, H., Chen, Z.: Shear dispersion in a capillary tube with a porous wall. J. Contam. Hydrol. 185–186, 87–104 (2016)

    Article  Google Scholar 

  • Fakhari, A., Rahimian, M.H.: Phase-field modeling by the method of lattice Boltzmann equations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 81(2), 036707 (2010)

    Article  Google Scholar 

  • Ferer, M., Ji, C., Bromhal, G.S., Cook, J., Ahmadi, G., Smith, D.H.: Crossover from capillary fingering to viscous fingering for immiscible unstable flow: experiment and modeling. Phys. Rev. E 70(1), 016303 (2004)

    Article  Google Scholar 

  • Fontana, J.V., Dias, E.O., Miranda, J.A.: Controlling and minimizing fingering instabilities in non-Newtonian fluids. Phys. Rev. E 89(1), 013016 (2014)

    Article  Google Scholar 

  • Gouet-Kaplan, M., Tartakovsky, A., Berkowitz, B.: Simulation of the interplay between resident and infiltrating water in partially saturated porous media. Water Resour. Res. 45(5), W05416 (2009)

    Article  Google Scholar 

  • Gunstensen, A.K., Rothman, D.H., Zaleski, S., Zanetti, G.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43(8), 4320 (1991)

    Article  Google Scholar 

  • Guo, Z., Zheng, C., Shi, B.: An extrapolation method for boundary conditions in lattice Boltzmann method. Phys. Fluids 14(6), 2007–2010 (2002)

    Article  Google Scholar 

  • Hao, L., Cheng, P.: Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method. Int. J. Heat Mass Transf. 53(9–10), 1908–1913 (2010)

    Article  Google Scholar 

  • He, X., Chen, S., Zhang, R.: A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999)

    Article  Google Scholar 

  • Hiroyuki, O., Churchill, S.W.: Hydrodynamic stability and natural convection in Ostwaldde Waele and Ellis fluids: the development of a numerical solution. Aiche J. 18(6), 1196–1207 (2010)

    Google Scholar 

  • Huang, H., Meakin, P., Liu, M.: Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method. Water Resour. Res. 41(12), W12413 (2005)

    Article  Google Scholar 

  • Huang, H., Huang, J.-J., Lu, X.-Y.: Study of immiscible displacements in porous media using a color-gradient-based multiphase lattice Boltzmann method. Comput. Fluids 93, 164–172 (2014)

    Article  Google Scholar 

  • Jettestuen, E., Helland, J.O., Prodanović, M.: A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resour. Res. 49(8), 4645–4661 (2013)

    Article  Google Scholar 

  • Lee, T., Lin, C.-L.: A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J. Comput. Phys. 206(1), 16–47 (2005)

    Article  Google Scholar 

  • Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165–187 (1988)

    Article  Google Scholar 

  • Lindner, A., Bonn, D., Meunier, J.: Viscous fingering in a shear-thinning fluid. Phys. Fluids 12(2), 256–261 (2000)

    Article  Google Scholar 

  • Lindner, A., Coussot, P., Bonn, D.: Viscous fingering in a yield stress fluid. Phys. Rev. Lett. 85(2), 314 (2000)

    Article  Google Scholar 

  • Lindner, A., Bonn, D., Poiré, E.C., Amar, M.B., Meunier, J.: Viscous fingering in non-Newtonian fluids. J. Fluid Mech. 469, 237–256 (2002)

    Article  Google Scholar 

  • Liu, H., Valocchi, A.J., Kang, Q., Werth, C.: Pore-scale simulations of gas displacing liquid in a homogeneous pore network using the lattice Boltzmann method. Transp. Porous Media 99(3), 555–580 (2013)

    Article  Google Scholar 

  • Liu, H., Valocchi, A.J., Werth, C., Kang, Q., Oostrom, M.: Pore-scale simulation of liquid Co\(_{2}\) displacement of water using a two-phase lattice Boltzmann model. Adv. Water Resour. 73, 144–158 (2014)

    Article  Google Scholar 

  • Liu, H., Zhang, Y., Valocchi, A.J.: Lattice Boltzmann simulation of immiscible fluid displacement in porous media: homogeneous versus heterogeneous pore network. Phys. Fluids 27(5), 052103 (2015)

    Article  Google Scholar 

  • Liu, H., Kang, Q., Leonardi, C.R., Schmieschek, S., Narváez, A., Jones, B.D., Williams, J.R., Valocchi, A.J., Harting, J.: Multiphase lattice Boltzmann simulations for porous media applications. Comput. Geosci. 20(4), 777–805 (2016)

    Article  Google Scholar 

  • Lou, Q., Guo, Z., Shi, B.: Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation. Phys. Rev. E 87(6), 063301 (2013)

    Article  Google Scholar 

  • Mashayekhizadeh, V., Kord, S., Dejam, M.: Eor potential within Iran. Spec. Top. Rev. Porous Media 5(4), 325–354 (2014)

    Article  Google Scholar 

  • Mora, S., Manna, M.: Saffman–Taylor instability of viscoelastic fluids: from viscous fingering to elastic fractures. Phys. Rev. E 81(2), 026305 (2010)

    Article  Google Scholar 

  • Mora, S., Manna, M.: From viscous fingering to elastic instabilities. J Non-Newton. Fluid Mech. 173, 30–39 (2012)

    Article  Google Scholar 

  • Nadirah, L., Abdurahman, H.N., Rizauddin, D.: Rheological study of petroleum fluid and oil-in-water emulsion. Int. J. Eng. Sci. Res. Technol. 3(1), 2277–9655 (2014)

    Google Scholar 

  • Pan, C., Luo, L.-S., Miller, C.T.: An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput. Fluids 35(8–9), 898–909 (2006)

    Article  Google Scholar 

  • Piri, M., Blunt, M.J.: Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous media. I. Model description. Phys. Rev. E 71(2), 026301 (2005)

    Article  Google Scholar 

  • Prodanović, M., Bryant, S.L.: A level set method for determining critical curvatures for drainage and imbibition. J. Colloid Interface Sci. 304(2), 442–458 (2006)

    Article  Google Scholar 

  • Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. J. Comput. Phys. 231(17), 5653–5668 (2012)

    Article  Google Scholar 

  • Reis, T., Phillips, T.N.: Lattice Boltzmann model for simulating immiscible two-phase flows. J. Phys. A Math. Theor. 40(14), 4033 (2007)

    Article  Google Scholar 

  • Riaz, A., Tchelepi, H.A.: Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation. Phys. Fluids 16(12), 4727–4737 (2004)

    Article  Google Scholar 

  • Riaz, A., Tchelepi, H.A.: Influence of relative permeability on the stability characteristics of immiscible flow in porous media. Transp. Porous Media 64(3), 315–338 (2006)

    Article  Google Scholar 

  • Rønningsen, H.P.: Rheology of petroleum fluids. Ann. Trans. Nord. Rheol. Soc. 20, 11–18 (2012)

    Google Scholar 

  • Rothman, D.H., Keller, J.M.: Immiscible cellular-automaton fluids. J. Stat. Phys. 52(3), 1119–1127 (1988)

    Article  Google Scholar 

  • Saboorian-Jooybari, H., Dejam, M., Chen, Z., et al.: Half-century of heavy oil polymer flooding from laboratory core floods to pilot tests and field applications. In: SPE Canada Heavy Oil Technical Conference. Society of Petroleum Engineers (2015)

  • Saboorian-Jooybari, H., Dejam, M., Chen, Z.: Heavy oil polymer flooding from laboratory core floods to pilot tests and field applications: half-century studies. J. Pet. Sci. Eng. 142, 85–100 (2016)

    Article  Google Scholar 

  • Sader, J.E., Chan, D.Y.C., Hughes, B.D.: Non-Newtonian effects on immiscible viscous fingering in a radial Hele–Shaw cell. Phys. Rev. E 49(1), 420 (1994)

    Article  Google Scholar 

  • Sahu, K.C., Vanka, S.P.: A multiphase lattice Boltzmann study of buoyancy-induced mixing in a tilted channel. Comput. Fluids 50(1), 199–215 (2011)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815 (1993)

    Article  Google Scholar 

  • Shan, X., Chen, H.: Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49(4), 2941 (1994)

    Article  Google Scholar 

  • Shan, X., Doolen, G.: Multicomponent lattice-Boltzmann model with interparticle interaction. J. Stat. Phys. 81(1), 379–393 (1995)

    Article  Google Scholar 

  • Shi, Y., Tang, G.H.: Non-newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method. J. Non-Newton. Fluid Mech. 229, 86–95 (2016)

    Article  Google Scholar 

  • Singh, B.K., Azaiez, J.: Numerical simulation of viscous fingering of shear-thinning fluids. Can. J. Chem. Eng. 79(6), 961–967 (2001)

    Article  Google Scholar 

  • Sullivan, S.P., Gladden, L.F., Johns, M.L.: Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques. J. Non-Newton. Fluid Mech. 133(2–3), 91–98 (2006)

    Article  Google Scholar 

  • Swift, M.R., Orlandini, E., Osborn, W.R., Yeomans, J.M.: Lattice Boltzmann simulations of liquid–gas and binary fluid systems. Phys. Rev. E 54(5), 5041 (1996)

    Article  Google Scholar 

  • Tartakovsky, A.M., Meakin, P.: A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J. Comput. Phys. 207(2), 610–624 (2005)

    Article  Google Scholar 

  • Wang, Z., Feyen, J., Elrick, D.E.: Prediction of fingering in porous media. Water Resour. Res. 34(9), 2183–2190 (1998)

    Article  Google Scholar 

  • Wang, M., Xiong, Y., Liu, L., Peng, G.: Lbm investigation of immiscible displacement in a channel with regular surface roughness. Transp. Porous Media 123(1), 195–215 (2018)

    Article  Google Scholar 

  • Xiong, Q., Baychev, T.G., Jivkov, A.P.: Review of pore network modelling of porous media: experimental characterisations, network constructions and applications to reactive transport. J. Contam. Hydrol. 192, 101–117 (2016)

    Article  Google Scholar 

  • Yamamoto, T., Kamikawa, H., Mori, N., Nakamura, K.: Numerical simulation of viscous fingering in non-Newtonian fluids in a Hele–Shaw cell. Nihon Reoroji Gakkaishi 30(3), 121–127 (2002)

    Article  Google Scholar 

  • Yamamoto, T., Kimoto, R., Mori, N.: Tip velocity of viscous fingers in shear-thinning fluids in a Hele–Shaw cell. JSME Int. J. Ser. B Fluids Therm. Eng. 48(4), 756–762 (2005)

    Article  Google Scholar 

  • Yortsos, Y.C., Hickernell, F.J.: Linear stability of immiscible displacement in porous media. SIAM J. Appl. Math. 49(3), 730–748 (1989)

    Article  Google Scholar 

  • Zhang, R., He, X., Chen, S.: Interface and surface tension in incompressible lattice Boltzmann multiphase model. Comput. Phys. Commun. 129(1–3), 121–130 (2000)

    Article  Google Scholar 

  • Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W., Warner, M.G.: Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25(8), 3493–3505 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youming Xiong.

Appendix

Appendix

The variables in Eqs. 1 and 2 are calculated using the subsequent algorithms. \(\varGamma _i(\mathbf u )\) is calculated from

$$\begin{aligned} \varGamma _i(\mathbf{u })=w_i\left[ 1+\frac{\mathbf{e }_i\cdot \mathbf{u }}{c_s^2}+\frac{(\mathbf{e }_i\cdot \mathbf{u })^2}{2c_s^4}-\frac{\mathbf{u }^2}{2c_s^2}\right] . \end{aligned}$$
(13)

The equilibrium distribution functions \(f_i^\mathrm{eq}\) and \(g_i^\mathrm{eq}\) are written as

$$\begin{aligned} f_i^{eq}= & {} w_i\phi \left[ 1+\frac{\mathbf{e }_i\cdot \mathbf{u }}{c_s^2}+\frac{(\mathbf{e }_i\cdot \mathbf{u })^2}{2c_s^4}-\frac{\mathbf{u }^2}{2c_s^2}\right] . \end{aligned}$$
(14)
$$\begin{aligned} g_i^{eq}= & {} w_i\left[ p+\rho c_s^2\left( \frac{\mathbf{e }_i\cdot \mathbf{u }}{c_s^2}+\frac{(\mathbf{e }_i\cdot \mathbf{u })^2}{2c_s^4}-\frac{\mathbf{u }^2}{2c_s^2}\right) \right] . \end{aligned}$$
(15)

In the two-dimensional nine-velocity (D2Q9) model adopted in the present work, the velocity vectors are

$$\begin{aligned} \mathbf e _i=\left\{ \begin{array}{ll} [0,0] &{} i=0 \\ \quad \left[ \cos \left( \frac{(i-1)\pi }{2}\right) ,\sin \left( \frac{(i-1)\pi }{2}\right) \right] &{} i=1,2,3,4\\ \sqrt{2}\left[ \cos \left( \frac{(i-5)\pi }{2}+\frac{\pi }{4}\right) ,\sin \left( \frac{(i-5)\pi }{2}+\frac{\pi }{4}\right) \right] &{} i=5,6,7,8 \end{array} \right. \end{aligned}$$
(16)

The weighting coefficients are \(w_0=\frac{4}{9},w_i=\frac{1}{9},i=1,2,3,4,w_i=\frac{1}{36},i=5,6,7,8\).

At each time step, the index function \(\phi \), the pressure field p and the velocity field \(\mathbf u \) are calculated from

$$\begin{aligned} \left\{ \begin{array}{ll} \phi =\sum f_i\\ \displaystyle p=\sum g_i-\frac{1}{2}{} \mathbf u \cdot \nabla \psi (\rho )\delta _t\\ \displaystyle \mathbf u =\frac{1}{\rho c_s^2}+\frac{1}{2\rho }(\mathbf F _s+\mathbf G )\delta _t \end{array}\right. \end{aligned}$$
(17)

The density field and the kinematic viscosity can be calculated from

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle \rho (\phi )=\rho _l+\frac{\phi -\phi _l}{\phi _h-\phi _l}(\rho _h-\rho _l)\\ \displaystyle \nu (\phi )=\nu _l+\frac{\nu -\nu _l}{\nu _h-\nu _l}(\nu _h-\nu _l) \end{array}\right. \end{aligned}$$
(18)

where \(\rho _l\) and \(\rho _h\) are the densities of the lighter and heavier fluid, \(\nu _l\) and \(\nu _h\) are the kinematic viscosities of the lighter and heavier fluid, respectively. \(\phi _l\) and \(\phi _h\) are the index constants, respectively, corresponding to the lighter and heavier fluids, which are given as \(\phi _l=0.02381\) and \(\phi _h=0.2508\) (Zhang et al. 2000). In this model, the density ratio of the two fluids are limited to about 15 (Fakhari and Rahimian 2010). Numerical instability arises with density ratio exceeding this value.

The surface tension \(F_s\) and the body force G are calculated from

$$\begin{aligned} \left\{ \begin{array}{ll} F_s=\kappa \phi \nabla \nabla ^2\phi \\ G=(\rho -\rho _m)g \end{array}\right. \end{aligned}$$
(19)

where \(\kappa \) is a free parameter controlling the surface tension magnitude, \(\rho _m\) is the mean density, g is the gravitational acceleration.

In non-ideal fluid conditions, \(\nabla \psi (\rho ))=\nabla (p-c_s^2\rho )\) keeps the separations of phases, \(\nabla \psi (\phi )\) determines the physical intermolecular interactions. The Carnahan–Starling fluid equation of state is adopted specifying \(\psi (\phi )\) as

$$\begin{aligned} \psi (\phi )=c_s^2\phi \left[ \frac{1+\phi +\phi ^2-\phi ^3}{(1-\phi )^3}-1\right] -a\phi ^2 \end{aligned}$$
(20)

where a is a parameter to control the strength of molecular interactions. The critical value of Carnahan–Starling equation of state Norman (1969) is \(a_c=3.53374\). For \(a>a_c\), the fluids remain immiscible. Too large a values may cause numerical instabilities. In this work, we choose \(a=4\) to comprise between immiscibility and numerical stability. \(\nabla \psi \) and \(\nabla ^2\psi \) are calculated with a forth-order compact scheme proposed by Lee and Lin (2005).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xiong, Y., Liu, L. et al. Lattice Boltzmann Simulation of Immiscible Displacement in Porous Media: Viscous Fingering in a Shear-Thinning Fluid. Transp Porous Med 126, 411–429 (2019). https://doi.org/10.1007/s11242-018-1162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1162-7

Keywords

Navigation