Skip to main content
Log in

Triphasic Model of Heat and Moisture Transport with Internal Mass Exchange in Paperboard

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Mixture theory is used to derive a triphasic model to describe processes in paperboard consisting of solid fiber, bound water and gas. The gas is viewed as a miscible mix of the two constituents dry air and water vapor. The governing equations are mass conservation laws for bound water, dry air, water vapor, and mixture energy balance. Constitutive relations are found by exploiting the macroscale dissipation inequality. Resulting constitutive equations include Fickian diffusion of water vapor and dry air, Darcian flow for gas and Fourier heat conduction for the mixture. Mass exchange between bound water, and water vapor due to adsorption/desorption is driven by the difference in chemical potential. The interaction function is based on equilibrium considerations for the bound water–water vapor system. From the description of the sorption isotherm, expressions for net isosteric heat and free energy related to water–fiber interaction are derived. The resulting thermodynamically consistent model is used to simulate moisture and heat dynamics for paperboard rolls. Simulation results are presented for a paperboard roll with anisotropic material properties subjected to a change in ambient relative humidity from 50 to 80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(a_\mathrm {w}\) :

Water activity (–)

\(a^\mathrm{{dir}}\) :

Parameter for intrinsic permeability in material direction dir (–)

A :

Sorption isotherm parameter (J/mol)

\(A_{\alpha }, \, A_{\alpha _j}\) :

Specific Helmholtz free energy (J/kg)

\(\varvec{b}_\alpha , \, \varvec{b}_{\alpha _j} \) :

Specific body force (N/kg)

B :

Sorption isotherm parameter (–)

\(c^v_{\alpha }, \, c^v_{\alpha _j}\) :

Isochoric heat capacity (J/kg K)

C :

Sorption isotherm parameter (J/kg)

\(\varvec{d}_\alpha \) :

Rate of deformation (1/s)

\(D, \, D^*, \, D^{n_1}, \, D^{n_2}, \, D^{d}\) :

Rate of energy dissipation per unit volume (W/m\(^3\))

\(\varvec{D}_{\alpha _j}\) :

Diffusivity tensor (s)

\(\hat{e}^\beta _{\alpha }, \, \hat{e}^\beta _{\alpha _j}\) :

Rate parameter for mass gain from phase \(\beta \) (1/s)

\(\hat{E}_{\alpha _j}\) :

Rate parameter for energy gain from other constituents in \(\alpha \) (J/kg s)

f :

Specific free energy related to water–fiber interaction (J/kg)

\(G_{\alpha }\) :

Specific Gibbs free energy (J/kg)

\(h_\alpha , \, h_{\alpha _j}\) :

Specific enthalpy (J/kg)

H :

Roll width (m)

\(\hat{\varvec{i}}_{\alpha _j}\) :

Rate of gain of linear momentum (m/s\(^2\))

\(\varvec{I}\) :

Identity matrix (–)

\(\varvec{K}\) :

Thermal conductivity tensor (W/m K)

\(\varvec{K}^p_{\beta ,\alpha }\) :

Intrinsic permeability tensor (m\(^2\))

\(k_{\mathrm {ser}}, \, k_{\mathrm {par}}, \, k_\alpha \) :

Thermal conductivity (W/m K)

\(\mathcal {L}_i\) :

Boundary segment i (m)

\( M_{g_j} \) :

Molar mass (kg/mol)

\(dm, \, dm_\alpha , \, dm_{\alpha _j}\) :

Mass of component in REV (kg)

\(\bar{\varvec{n}}\) :

Outward normal (–)

\(n_\alpha \) :

Volume fraction (–)

\(p_\alpha , \, p_{\alpha _j}\) :

Pressure (N/m\(^2\))

\(p^{eq}_{g_\mathrm {v}}\) :

Equilibrium vapor pressure (N/m\(^2\))

\(p^\mathrm{sat}_{g_\mathrm {v}}\) :

Saturation vapor pressure (N/m\(^2\))

\( q^n_{g_\mathrm {v}}, q^n_{g_\mathrm {a}} \) :

Boundary combined mass flux (kg/m\(^2\) s)

\( q^n_{\theta } \) :

Boundary heat flux (W/m\(^2\))

\(\varvec{q}_\alpha , \, \varvec{q}_{\alpha _j} \) :

Heat flux (W/m\(^2\))

\(\tilde{\varvec{q}}\) :

Combined heat flux (W/m\(^2\))

\(\hat{Q}^\beta _{\alpha _j}\) :

Rate parameter for energy gain from phase \(\beta \) (W/kg)

r :

Spatial coordinate (m)

\(r_\alpha , \, r_{\alpha _j}\) :

External heat source (W/kg)

\(\hat{r}_{\alpha _j}\) :

Rate of mass gain from other constituents in \(\alpha \) (1/s)

\(r_{\mathrm {core}}, \, r_{\mathrm {outer}}\) :

Paperboard roll radius (m)

R :

Universal gas constant (J/mol-K)

\(\hat{\varvec{T}}^\beta _{\alpha }, \, \hat{\varvec{T}}^\beta _{\alpha _j}\) :

Rate parameter for gain of linear momentum from phase \(\beta \) (m/s\(^2\))

\(t, \, t_r\) :

Time (s)

\(u_\alpha , \, u_{\alpha _j}\) :

Specific internal energy (J/kg)

\(dv, \, dv_\alpha \) :

Volume of components in REV (m\(^3\))

\(\varvec{v}, \, \varvec{v}_\alpha , \, \varvec{v}_{\alpha _j}\) :

Velocity (m/s)

\(\varvec{v}^{\beta ,\alpha }\) :

Velocity of \(\beta \) relative to \(\alpha \) (m/s)

\(\varvec{w}_\alpha , \, \varvec{w}_{\alpha _j}\) :

Diffusive velocity (m/s)

W :

Moisture ratio (–)

z :

Spatial coordinate (m)

\(\zeta \) :

Rate coefficient for mass transfer (kg s/m\(^5\))

\( \eta _\alpha , \, \eta _{\alpha _j} \) :

Specific entropy (J/kg K)

\( \theta \) :

Absolute temperature (K)

\(\lambda _{\alpha }, \lambda _{\alpha _j}\) :

Lagrangian multiplier (J/kg)

\(\varvec{\varLambda }_w\) :

Lagrangian multiplier (J/kg)

\(\mu _{\alpha }, \, \mu _{\alpha _j}\) :

Specific chemical potential (J/kg)

\(\bar{\mu }_{\alpha }, \, \bar{\mu }_{\alpha _j}\) :

Dynamic viscosity (Pa s)

\(\rho , \, \rho _{\alpha }, \, \rho _{\alpha _j} \) :

Intrinsic density (kg/m\(^3\))

\(\varvec{\sigma }_{\alpha }, \, \varvec{\sigma }_{\alpha _j}\) :

Stress (N/m\(^2\))

\(\hat{\varvec{\tau }}_{\alpha }, \, \hat{\varvec{\tau }}_{\alpha _j}\) :

Total rate of gain of linear momentum per unit volume (N/m\(^3\))

\(\phi \) :

Relative humidity (–)

\(\omega _i\) :

Arbitrary weight function (–)

\(\varOmega _s\) :

Solid phase domain (m\(^2\))

\(\partial \varOmega _s\) :

Boundary of solid phase domain (m)

\((\bullet )^o\) :

State without interactions

\((\bullet )^*\) :

Fixed reference state

\((\bullet )_\alpha \) :

Property of phase \(\alpha \)

\((\bullet )_{\alpha _j}\) :

Property of constituent j in phase \(\alpha \)

\((\bullet )_{\infty }\) :

Property of ambient atmosphere

\((\bullet )_{0}\) :

Property at initial state

References

  • Achanta, S., Cushman, J., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)

    Article  Google Scholar 

  • Baggerud, E.: Modelling of Mass and Heat Transport in Paper. Ph.D., thesis, Lund University (2004)

  • Bandyopadhyay, A., Radhakrishnan, H., Ramarao, B.V., Chatterjee, S.G.: Moisture sorption response of paper subjected to ramp humidity changes: modeling and experiments. Ind. Eng. Chem. Res. 39, 219–226 (2000)

    Article  Google Scholar 

  • Bandyopadhyay, A., Ramarao, B.V., Ramaswamy, S.: Transient moisture diffusion through paperboard materials. Colloids Surf. A Physicochem. Eng. Asp. 206, 455–467 (2002)

    Article  Google Scholar 

  • Bénet, J.-C., Lozano, A.-L., Cherblanc, F., Cousin, B.: Phase change of water in a hygroscopic porous medium. Phenomenological relation and experimental analysis for water in soil. J. Non-Equilib. Thermodyn. 34(2), 133–153 (2009)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems. 1 Balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996a)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems. 2. Constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996b)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transp. Porous Media 47, 309–336 (2002a)

    Article  Google Scholar 

  • Bennethum, L.S., Cushman, J.H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II Constitutive theory. Transp. Porous Media 47, 337–362 (2002b)

    Article  Google Scholar 

  • Bennethum, L.S., Murad, M., Cushman, J.: Modified Darcys Law Terzaghis effective stress principle and Ficks law for swelling clay soils. Comput. Geotech. 20(3), 245–266 (1997)

    Article  Google Scholar 

  • Bennethum, L.S., Murad, M.A., Cushman, J.H.: Macroscale thermodynamics and the chemical potential for swelling porous media. Transp. Porous Media 39, 187–225 (2000)

    Article  Google Scholar 

  • Bensal, H.S., Takhar, P.S., Maneerote, J.: Modeling multiscale transport mechanisms, phase changes and thermomechanics during frying. Food Res. Int. 62, 709–717 (2014)

    Article  Google Scholar 

  • Cengel, Y.A., Boles, M.A.: Thermodynamics: And Engineering Approach, 6th edn. Wiley InterSciences, Hoboken (2007)

    Google Scholar 

  • Chirife, J., Iglesias, H.A.: Equations for fitting water sorption isotherms of foods: part 1—a review. J. Food Technol. 13, 159–174 (1978)

    Article  Google Scholar 

  • Cleland, D.J., Bronlund, J.E., Tanner, D.J., Smale, N.J., Wang, J.F., Nevis, A.L., Elsten, T., Mackay, S.B., Mawson, A.J., Merts, I.: Refrigeration Load Due to Moisture Sorption From Food Packaging Materials (1210-RP). Technical report, Institute of Technology and Engineering (2007)

  • Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Thermodyn. Anal. 13, 167–178 (1963)

    Article  Google Scholar 

  • Foss, W.R., Bronkhorst, C.A., Bennett, K.A.: Simultaneous heat and mass transport in paper sheets during moisture sorption from humid air. Int. J. Heat Mass Transf. 46, 2875–2886 (2003)

    Article  Google Scholar 

  • Fremond, M., Nicolas, P.: Macroscopic thermodynamics of porous media. Contin. Mech. Thermodyn. 2, 119–139 (1990)

    Article  Google Scholar 

  • Graf, T.: Mutliphasic Flow Processes in Deformable Porous Media under Consideration of Fluid Phase Transitions. Ph.D. thesis, Stuttgart University (2008)

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 1. Averaging procedure. Adv. Water Res. 2, 131–144 (1979a)

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: General conservation equations for multiphase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Res. 2, 191–208 (1979b)

    Article  Google Scholar 

  • Jussila, P.: Thermomechanics of swelling unsaturated porous media: compacted bentonite clay in spent fuel disposal. Ph.D. thesis, Helsinki University of Technology (2007)

  • Karlsson, M., Stenström, S.: Static and dynamic modeling of cardboard drying part 1: theoretical model. Dry. Technol. 23, 143–163 (2005)

    Article  Google Scholar 

  • Liu, I.-S.: Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Ration. Thermodyn. Anal. 46, 131–141 (1972)

    Google Scholar 

  • Masoodi, R., Pillai, K.: Darcy’s law-based model for wicking in paper-like swelling porous media. AIChE J. 56(9), 2257–2267 (2010)

    Google Scholar 

  • Nyman, U., Gustafsson, P.J., Johannesson, B., Hägglund, R.: A numerical method for nonlinear transient moisture flow in cellulosic materials. Int. J. Numer. Methods Eng. 66, 1859–1883 (2006)

    Article  Google Scholar 

  • Östlund, M.: Modeling the influence of drying conditions on the stress buildup during drying of paperboard. J. Eng. Mater. Technol. 128, 495–502 (2006)

    Article  Google Scholar 

  • Petterson, M., Stenström, S.: Experimental evaluation of electric infrared dryers. Tappi J. 83(8), 89–106 (2000)

    Google Scholar 

  • Pont, S.D., Meftah, F., Schrefler, B.: Modeling concrete under severe conditions as a multiphase material. Nucl. Eng. Des. 241, 562–572 (2011)

    Article  Google Scholar 

  • Ristinmaa, M., Ottosen, N.S., Johannesson, B.: Mixture theory for a thermoelasto-plastic porous solid considering fluid flow and internal mass exchange. Int. J. Eng. Sci. 49, 1185–1203 (2011)

    Article  Google Scholar 

  • Schrefler, B.A.: Mechanics and thermodynamics of saturated/unsaturated porous materials and quantitative solutions. Appl. Mech. Rev. AMSE 55(46), 351–388 (2002)

    Article  Google Scholar 

  • Sullivan, E.R.: Heat and moisture transport in unsaturated porous media: a coupled model in terms of chemical potential. Ph.D. thesis, University of Colorado (2013)

  • Takhar, P.S.: Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Coupled fluid transport and stress equations. J. Food Eng. 105, 663–670 (2011)

    Article  Google Scholar 

  • Takhar, P.S.: Unsaturated fluid transport in swelling poroviscoelastic biopolymers. Chem. Eng. Sci. 109, 98–110 (2014)

    Article  Google Scholar 

  • Weinstein, T.F., Bennethum, L.S., Cushman, J.H.: Two-scale, three-phase theory for swelling drug deliver systems. Part 1: constitutive theory. J. Pharm. Sci. 97(5), 1878–1903 (2008)

    Article  Google Scholar 

  • Zapata, P., Fransen, M., Boonkkamp, J., Saes, L.: Coupled heat and moisture transport in paper with application to a warm print surface. Appl. Math. Model. 37, 7273–7286 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Alexandersson.

Appendices

Appendix 1: Determining Pressure Relations

Assuming that the constitutive variables in curly brackets in (30) are not functions of its energy conjugated coefficient i.e., \(\varvec{d}_g\), \(\varvec{d}_l\), \(\nabla \otimes \varvec{w}_{g_\mathrm {v}}\), \(\nabla \otimes \varvec{w}_{g_\mathrm {a}}\), \(\frac{D_s(\rho _{g_\mathrm {v}})}{Dt}\), \(\frac{D_s(\rho _{g_\mathrm {a}})}{Dt}\) and \(\frac{D_s(n_l)}{Dt}\), provide that the expressions inside the curly brackets are zero in order to satisfy the dissipation inequality. Therefore, it is possible to write

$$\begin{aligned}&-p_g + \rho _{g_\mathrm {v}} \lambda _{g_\mathrm {v}} + \rho _{g_\mathrm {a}} \lambda _{g_\mathrm {a}} = 0, \end{aligned}$$
(65a)
$$\begin{aligned}&\lambda _l - \frac{p_l}{\rho _l} = 0,\end{aligned}$$
(65b)
$$\begin{aligned}&\left( -\frac{p_{g_\mathrm {v}}}{\rho _{g_\mathrm {v}}} - A_{g_\mathrm {v}} + \lambda _{g_\mathrm {v}}\right) \varvec{I} + \varvec{\varLambda }_w = \varvec{0}, \end{aligned}$$
(65c)
$$\begin{aligned}&\left( -\frac{p_{g_\mathrm {a}}}{\rho _{g_\mathrm {a}}} - A_{g_\mathrm {a}} + \lambda _{g_\mathrm {a}}\right) \varvec{I} + \varvec{\varLambda }_w = \varvec{0}, \end{aligned}$$
(65d)
$$\begin{aligned}&\lambda _{g_\mathrm {v}} = \rho _g \frac{\partial A_g}{\partial \rho _{g_\mathrm {v}}}, \end{aligned}$$
(65e)
$$\begin{aligned}&\lambda _{g_\mathrm {a}} = \rho _g \frac{\partial A_g}{\partial \rho _{g_\mathrm {a}}}, \end{aligned}$$
(65f)
$$\begin{aligned}&\rho _l \lambda _l - \rho _{g_\mathrm {v}} \lambda _{g_\mathrm {v}} - \rho _{g_\mathrm {a}}\lambda _{g_\mathrm {a}} - n_l \rho _l \frac{\partial A_l}{\partial n_l} = 0, \end{aligned}$$
(65g)

where the deviatoric part of the fluid stress tensors as well as the second-order terms are neglected. Inserting (65b), (65c), (65d) into the definition of phase stress (15) subjected to the same assumptions yields

$$\begin{aligned} \varvec{\varLambda }_w = A_g \varvec{I}. \end{aligned}$$
(66)

Inserting (65e), (65f), (66) into (65c) and (65d) and utilizing that \(\rho _g A_g(\theta ,\rho _{g_\mathrm {v}},\rho _{g_\mathrm {a}})= \rho _{g_\mathrm {v}} A_{g_\mathrm {v}}(\theta ,\rho _{g_\mathrm {v}}) + \rho _{g_\mathrm {a}} A_{g_\mathrm {a}}(\theta ,\rho _{g_\mathrm {a}})\) enable us to write the partial pressures as

$$\begin{aligned}&p_{g_\mathrm {v}} = (\rho _{g_\mathrm {v}})^2 \frac{\partial A_{g_\mathrm {v}}}{\partial \rho _{g_\mathrm {v}}}, \quad p_{g_\mathrm {a}} = (\rho _{g_\mathrm {a}})^2 \frac{\partial A_{g_\mathrm {a}}}{\partial \rho _{g_\mathrm {a}}}. \end{aligned}$$
(67)

Combination of (65a), (65b) and (65g) result in

$$\begin{aligned} p_l = p_g + n_l \rho _l \frac{\partial A_l}{\partial n_l}. \end{aligned}$$
(68)

Appendix 2: Derivations of Expressions for Seepage and Diffusion Velocities

Recall terms two to five in (32). Assuming that each term give nonnegative dissipation the following is obtained

$$\begin{aligned}&- \varvec{w}_{g_\mathrm {v}} \cdot \left\{ \nabla (n_g \rho _{g_\mathrm {v}} A_{g_\mathrm {v}}) + \hat{\varvec{\tau }}_{g_\mathrm {v}} - \lambda _{g_\mathrm {v}} \nabla (n_g \rho _{g_\mathrm {v}}) - \varvec{\varLambda }_w \cdot \nabla (n_g \rho _{g_\mathrm {v}}) \right\} \ge 0, \end{aligned}$$
(69a)
$$\begin{aligned}&- \varvec{w}_{g_\mathrm {a}} \cdot \left\{ \nabla (n_g \rho _{g_\mathrm {a}} A_{g_\mathrm {a}}) + \hat{\varvec{\tau }}_{g_\mathrm {a}} - \lambda _{g_\mathrm {a}} \nabla (n_g \rho _{g_\mathrm {a}}) - \varvec{\varLambda }_w \cdot \nabla (n_g \rho _{g_\mathrm {a}}) \right\} \ge 0, \end{aligned}$$
(69b)
$$\begin{aligned}&\varvec{v}^{l,s} \cdot \left\{ -n_l \rho _l \nabla (A_l) - n_l \rho _l \eta _l \nabla (\theta ) - \hat{\varvec{\tau }}_{l} + \lambda _l \rho _l \nabla (n_l) \right\} \ge 0, \end{aligned}$$
(69c)
$$\begin{aligned}&\varvec{v}^{g,s} \cdot \left\{ -n_g \rho _g \nabla (A_g) - n_g \rho _g \eta _g \nabla (\theta ) - \hat{\varvec{\tau }}_{g} + \lambda _{g_\mathrm {v}} \nabla (n_g \rho _{g_\mathrm {v}}) + \lambda _{g_\mathrm {a}} \nabla (n_g \rho _{g_\mathrm {a}}) \right\} \ge 0. \end{aligned}$$
(69d)

The linear momentum balances (10) and (17) written for the paperboard components with negligible inertial terms and non-deviatoric stresses are

$$\begin{aligned}&-\nabla (n_g p_{g_\mathrm {v}}) + \hat{\varvec{\tau }}_{g_\mathrm {v}} + n_g \rho _{g_\mathrm {v}} \varvec{b}_{g_\mathrm {v}} = 0, \end{aligned}$$
(70a)
$$\begin{aligned}&-\nabla (n_g p_{g_\mathrm {a}}) + \hat{\varvec{\tau }}_{g_\mathrm {a}} + n_g \rho _{g_\mathrm {a}} \varvec{b}_{g_\mathrm {a}} = 0, \end{aligned}$$
(70b)
$$\begin{aligned}&-\nabla (n_g p_g) + \hat{\varvec{\tau }}_g + n_g \rho _g \varvec{b}_g = 0, \end{aligned}$$
(70c)
$$\begin{aligned}&-\nabla (n_l p_l) + \hat{\varvec{\tau }}_l + n_l \rho _l \varvec{b}_l = 0, \end{aligned}$$
(70d)

where definitions (24a–d) were used. Inserting (70c), (70d) into (69c), (69d) and expanding the gradients, recalling the dependencies of Helmholtz free energy in (41) and the definitions of entropy in (29) as well as equations (65b), (65e) and (65f), provide after simplifications

$$\begin{aligned}&\varvec{v}^{l,s} \cdot \left\{ -n_l \rho _l \frac{\partial A_l}{\partial n_l} \nabla (n_l) -n_l \nabla ( p_l) + n_l \rho _l \varvec{b}_l \right\} \ge 0, \end{aligned}$$
(71a)
$$\begin{aligned}&\varvec{v}^{g,s} \cdot \left\{ \left( \rho _{g_\mathrm {v}} \rho _g \frac{\partial A_g}{\partial \rho _{g_\mathrm {v}}}+ \rho _{g_\mathrm {a}}\rho _{g} \frac{\partial A_g}{\partial \rho _{g_\mathrm {a}}} -p_g \right) \nabla (n_g) - n_g \nabla ( p_g) + n_g \rho _g \varvec{b}_g \right\} \ge 0. \end{aligned}$$
(71b)

From (65a), it is seen that the first term in (71b) vanishes. One possible way to satisfy the dissipation inequality is

$$\begin{aligned}&\varvec{v}^{l,s} = -\frac{\varvec{K}^p_{l,s}}{\bar{\mu _l}} \cdot [ n_l \nabla (p_l) + n_l \rho _l \frac{\partial A_l}{\partial n_l}\nabla (n_l) -n_l \rho _l \varvec{b}_l ],\end{aligned}$$
(72a)
$$\begin{aligned}&\varvec{v}^{g,s} = -\frac{\varvec{K}^p_{g,s}}{\bar{\mu _g}} \cdot [ n_g \nabla (p_g) - n_g \rho _g \varvec{b}_g ], \end{aligned}$$
(72b)

where \(\frac{\varvec{K}^p_{l,s}}{\bar{\mu _l}}\) and \(\frac{\varvec{K}^p_{g,s}}{\bar{\mu _g}}\) are positive definite tensors. Insertion of (70a) and (70b) into (69a) and (69b) leads to

$$\begin{aligned}&-\varvec{w}_{g_\mathrm {v}} \cdot \left\{ \nabla \left( n_g \rho _{g_\mathrm {v}} \left[ A_{g_\mathrm {v}} + \frac{p_{g_\mathrm {v}}}{\rho _{g_\mathrm {v}}}\right] \right) - n_g\rho _{g_\mathrm {v}}\varvec{b}_{g_\mathrm {v}} -(\lambda _{g_\mathrm {v}}\varvec{I}+\varvec{\varLambda }_w) \cdot \nabla (n_g \rho _{g_\mathrm {v}}) \right\} \ge 0, \end{aligned}$$
(73a)
$$\begin{aligned}&-\varvec{w}_{g_\mathrm {a}} \cdot \left\{ \nabla \left( n_g \rho _{g_\mathrm {a}} \left[ A_{g_\mathrm {a}}+ \frac{p_{g_\mathrm {a}}}{\rho _{g_\mathrm {a}}}\right] \right) - n_g\rho _{g_\mathrm {a}}\varvec{b}_{g_\mathrm {a}} -(\lambda _{g_\mathrm {a}}\varvec{I}+\varvec{\varLambda }_w) \cdot \nabla (n_g \rho _{g_\mathrm {a}}) \right\} \ge 0. \end{aligned}$$
(73b)

Insertion of (65c), (65d) and (66) into (73a) and (73b) results in

$$\begin{aligned}&-\varvec{w}_{g_\mathrm {v}} \cdot \left\{ n_g \rho _{g_\mathrm {v}} \nabla \left( A_{g_\mathrm {v}} + \frac{p_{g_\mathrm {v}}}{\rho _{g_\mathrm {v}}}\right) - n_g\rho _{g_\mathrm {v}}\varvec{b}_{g_\mathrm {v}} \right\} \ge 0, \end{aligned}$$
(74a)
$$\begin{aligned}&-\varvec{w}_{g_\mathrm {a}} \cdot \left\{ n_g \rho _{g_\mathrm {a}} \nabla \left( A_{g_\mathrm {a}}+ \frac{p_{g_\mathrm {a}}}{\rho _{g_\mathrm {a}}}\right) - n_g\rho _{g_\mathrm {a}}\varvec{b}_{g_\mathrm {a}} \right\} \ge 0. \end{aligned}$$
(74b)

One possible way to satisfy the dissipation inequality is the choice

$$\begin{aligned}&\varvec{w}_{g_\mathrm {v}} = - \varvec{D}_{g_\mathrm {v}} \cdot [ \nabla (\mu _{g_\mathrm {v}}) -\varvec{b}_{g_\mathrm {v}}], \end{aligned}$$
(75a)
$$\begin{aligned}&\varvec{w}_{g_\mathrm {a}} = -\varvec{D}_{g_\mathrm {a}} \cdot [\nabla (\mu _{g_\mathrm {a}}) - \varvec{b}_{g_\mathrm {a}}], \end{aligned}$$
(75b)

where \(\mu _{g_\mathrm {v}}= A_{g_\mathrm {v}} + \frac{p_{g_\mathrm {v}}}{\rho _{g_\mathrm {v}}}\), \(\mu _{g_\mathrm {a}}= A_{g_\mathrm {a}} + \frac{p_{g_\mathrm {a}}}{\rho _{g_\mathrm {a}}}\) and \(\varvec{D}_{g_\mathrm {v}}\), \(\varvec{D}_{g_\mathrm {a}}\) are positive definite tensors.

Appendix 3: Derivation of the Energy Balance

Combining the energy balances (11) for all component of the system (\(s,l,g_\mathrm {v},g_\mathrm {a}\)) and eliminating the terms \(n_\alpha \rho _{\alpha _j} \hat{E}_{\alpha _j}\) and \(n_\alpha \rho _{\alpha _j} \hat{Q}^\beta _{\alpha _j}\) with summation constraints, that arise if the interfaces are assumed to not have any thermodynamic properties (e.g., no mass) (cf. Bennethum and Cushman 1996a), provide

$$\begin{aligned}&n_s \rho _s \frac{D_s(u_s)}{Dt} + n_l \rho _l \frac{D_s(u_l)}{Dt} + n_g \rho _{g_\mathrm {v}} \frac{D_s(u_{g_\mathrm {a}})}{Dt} + n_g \rho _{g_\mathrm {a}} \frac{D_s(u_{g_\mathrm {a}})}{Dt} = \nonumber \\&\quad -n_g \rho _{g_\mathrm {v}} \nabla (u_{g_\mathrm {v}}) \cdot \varvec{v}^{g,s} - n_g \rho _{g_\mathrm {a}} \nabla (u_{g_\mathrm {v}}) \cdot \varvec{v}^{g,s} + u_{g_\mathrm {v}} \nabla \cdot (n_g \rho _{g_\mathrm {v}} \varvec{w}_{g_\mathrm {v}}) +u_{g_\mathrm {a}} \nabla \cdot (n_g \rho _{g_\mathrm {a}} \varvec{w}_{g_\mathrm {a}}) \nonumber \\&\quad - \nabla \cdot (n_g p_g \varvec{v}^{g,s}) - \nabla \cdot (\tilde{\varvec{q}}) - \hat{m}_v (u_{g_\mathrm {v}}-u_l). \end{aligned}$$
(76)

Here the material time derivative is taken to follow the solid phase. The bound water velocity (\(\varvec{v}^{l,s}\)) and second-order velocity terms are neglected. No external sources (\(r_{\alpha _j}, \, r_{\alpha }\)) are present and gravity is omitted. The terms involving diffusive velocities are eliminated with the help of the balances of mass for vapor (37) and dry air (38), and the rate of evaporation is eliminated using the bound water balance of mass (39)

$$\begin{aligned}&u_{g_\mathrm {v}} \nabla (n_g \rho _{g_\mathrm {v}} \varvec{w}_{g_\mathrm {v}}) = -u_{g_\mathrm {v}} \frac{D_s(n_g \rho _{g_\mathrm {v}})}{Dt} + u_{g_\mathrm {v}} \hat{m}_v - u_{g_\mathrm {v}} \nabla \cdot (n_g \rho _{g_\mathrm {v}} \varvec{v}^{g,s}), \end{aligned}$$
(77a)
$$\begin{aligned}&u_{g_\mathrm {a}} \nabla (n_g \rho _{g_\mathrm {a}} \varvec{w}_{g_\mathrm {a}}) = -u_{g_\mathrm {a}} \frac{D_s(n_g \rho _{g_\mathrm {a}})}{Dt} - u_{g_\mathrm {a}} \nabla \cdot (n_g \rho _{g_\mathrm {a}} \varvec{v}^{g,s}), \end{aligned}$$
(77b)
$$\begin{aligned}&u_l \hat{m}_v = - \rho _l u_l \frac{D_s(n_l)}{Dt}. \end{aligned}$$
(77c)

Insertion of (77a), (77b) and (77c) into (76) results in

$$\begin{aligned}&n_s \rho _s \frac{D_s(u_s)}{Dt} + n_l \rho _l \frac{D_s(u_l)}{Dt} + n_g \rho _{g_\mathrm {v}} \frac{D_s(u_{g_\mathrm {a}})}{Dt} + n_g \rho _{g_\mathrm {a}} \frac{D_s(u_{g_\mathrm {a}})}{Dt} + n_g u_{g_\mathrm {v}} \frac{D_s(\rho _{g_\mathrm {v}})}{Dt} \nonumber \\&\quad + n_g u_{g_\mathrm {a}} \frac{D_s(\rho _{g_\mathrm {a}})}{Dt} + \nabla \cdot (\tilde{\varvec{q}} + (n_g \rho _{g_\mathrm {v}} u_{g_\mathrm {v}} + n_g \rho _{g_\mathrm {a}} u_{g_\mathrm {a}} + n_g p_g) \varvec{v}^{g,s} ) \nonumber \\&\quad +\rho _l u_l \frac{D_s(n_l)}{Dt} + \rho _{g_\mathrm {v}} u_{g_\mathrm {v}} \frac{D_s(n_g)}{Dt} + \rho _{g_\mathrm {a}} u_{g_\mathrm {a}} \frac{D_s(n_g)}{Dt} = 0 , \end{aligned}$$
(78)

For a rigid incompressible solid \(n_s = n_{s0}\) hence the time derivative of (2) becomes

$$\begin{aligned} \frac{D_s(n_g)}{Dt} = - \frac{D_s(n_l)}{Dt}. \end{aligned}$$
(79)

Further, with Helmholtz free energies given by (41) the dependencies of the internal energies are

$$\begin{aligned} u_{g_\mathrm {v}} = u_{g_\mathrm {v}}(\theta ), \quad u_{g_\mathrm {a}} = u_{g_\mathrm {a}}(\theta ), \quad u_s = u_s(\theta ), \quad u_l = u_l(\theta ,n_l). \end{aligned}$$
(80)

Utilizing the results from (79) and (80) the energy balance (78) may be written as

$$\begin{aligned}&\left( n_s \rho _s \frac{\partial u_s}{\partial \theta } + n_l \rho _l \frac{\partial u_l}{\partial \theta } + n_g \rho _{g_\mathrm {v}} \frac{\partial u_{g_\mathrm {v}}}{\partial \theta } + n_g \rho _{g_\mathrm {a}} \frac{\partial u_{g_\mathrm {a}}}{\partial \theta } \right) \frac{D_s (\theta )}{D t} + n_g u_{g_\mathrm {v}} \frac{D_s (\rho _{g_\mathrm {v}})}{D t} \nonumber \\&+ n_g u_{g_\mathrm {a}} \frac{D_s (\rho _{g_\mathrm {a}})}{D t} - \left( \rho _{g_\mathrm {v}} u_{g_\mathrm {v}} + \rho _{g_\mathrm {a}} u_{g_\mathrm {a}} - \rho _l u_l - n_l \rho _l \frac{\partial u_l}{\partial n_l} \right) \frac{D_s (n_l)}{D t} \nonumber \\&+ \nabla \cdot \left( \tilde{\varvec{q}} + n_g (\rho _{g_\mathrm {v}} u_{g_\mathrm {v}} + p_{g_\mathrm {v}} + \rho _{g_\mathrm {a}} u_{g_\mathrm {a}} + p_{g_\mathrm {a}}) \varvec{v}^{g,s} \right) = 0. \end{aligned}$$
(81)

Appendix 4: Requirement of Exothermic Adsorption

With insertion of the mass balances (37), (38), (39) the energy equation (40) may be written for a homogeneous state (the gradient terms disappear) as

$$\begin{aligned} \frac{\partial \theta }{\partial t} = -\frac{\tilde{u}}{\tilde{c}} \hat{m}_v, \end{aligned}$$
(82)

where

$$\begin{aligned} \tilde{u}= & {} (u_{g_\mathrm {v}} - u^o_l) + (u^o_l-u_l) + W \frac{\partial (u^o_l-u_l)}{\partial W} , \end{aligned}$$
(83)
$$\begin{aligned} \tilde{c}= & {} n_s \rho _s c^v_s + n_l \rho _l c^v_l + n_g \rho _{g_\mathrm {v}} c^v_{g_\mathrm {v}} + n_g \rho _{g_\mathrm {a}} c^v_{g_\mathrm {a}}. \end{aligned}$$
(84)

The first parenthesis is the internal energy change for evaporation of free water

$$\begin{aligned} u_{g_\mathrm {v}} - u^o_l= (c^v_{g_\mathrm {v}}-c^v_{l})(\theta -\theta ^*)+(u^*_{g_\mathrm {v}} - u^*_l), \end{aligned}$$
(85)

which is positive in the expected temperature range. The second term is related to the function f via Legendre transformations. For an adsorption process \(\hat{m}_v < 0\) provide that the temperature will increase due to the reaction if \(\tilde{u} > 0\).

The specific format of the internal energy of sorption is related to the choice of isotherm description. For a format of the sorption isotherm according to

$$\begin{aligned} a_\mathrm{w} = \exp \left( -\frac{A}{R \theta } \gamma (W) \right) , \end{aligned}$$
(86)

the internal energy change associated with the solid–liquid interactions become

$$\begin{aligned} (u^o_l-u_l) + W \frac{\partial (u^o_l-u_l)}{\partial W} = \frac{1}{W} \frac{A}{R \theta } \gamma (W). \end{aligned}$$
(87)

Especifically for the Chung–Pfost-type isotherm \(\gamma (W) = \exp (-BW)\), a sufficient condition for an exothermic adsorption is \(A>0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandersson, M., Askfelt, H. & Ristinmaa, M. Triphasic Model of Heat and Moisture Transport with Internal Mass Exchange in Paperboard. Transp Porous Med 112, 381–408 (2016). https://doi.org/10.1007/s11242-016-0651-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0651-9

Keywords

Navigation